30 research outputs found

    Energy-guided Entropic Neural Optimal Transport

    Full text link
    Energy-Based Models (EBMs) are known in the Machine Learning community for the decades. Since the seminal works devoted to EBMs dating back to the noughties there have been appearing a lot of efficient methods which solve the generative modelling problem by means of energy potentials (unnormalized likelihood functions). In contrast, the realm of Optimal Transport (OT) and, in particular, neural OT solvers is much less explored and limited by few recent works (excluding WGAN based approaches which utilize OT as a loss function and do not model OT maps themselves). In our work, we bridge the gap between EBMs and Entropy-regularized OT. We present the novel methodology which allows utilizing the recent developments and technical improvements of the former in order to enrich the latter. We validate the applicability of our method on toy 2D scenarios as well as standard unpaired image-to-image translation problems. For the sake of simplicity, we choose simple short- and long- run EBMs as a backbone of our Energy-guided Entropic OT method, leaving the application of more sophisticated EBMs for future research

    Partial Neural Optimal Transport

    Full text link
    We propose a novel neural method to compute partial optimal transport (OT) maps, i.e., OT maps between parts of measures of the specified masses. We test our partial neural optimal transport algorithm on synthetic examples

    Entropic Neural Optimal Transport via Diffusion Processes

    Full text link
    We propose a novel neural algorithm for the fundamental problem of computing the entropic optimal transport (EOT) plan between probability distributions which are accessible by samples. Our algorithm is based on the saddle point reformulation of the dynamic version of EOT which is known as the Schr\"odinger Bridge problem. In contrast to the prior methods for large-scale EOT, our algorithm is end-to-end and consists of a single learning step, has fast inference procedure, and allows handling small values of the entropy regularization coefficient which is of particular importance in some applied problems. Empirically, we show the performance of the method on several large-scale EOT tasks
    corecore