4 research outputs found

    Through the Eyes of Creators: Observing Artificial Molecular Motors : ACS Nanoscience Au

    No full text
    Inspired by molecular motors in biology, there hasbeen significant progress in building artificial molecular motors, usinga number of quite distinct approaches. As the constructs become moresophisticated, there is also an increasing need to directly observe themotion of artificial motors at the nanoscale and to characterize theirperformance. Here, we review the most used methods that tacklethose tasks. We aim to help experimentalists with an overview of theavailable tools used for different types of synthetic motors and tochoose the method most suited for the size of a motor and the desiredmeasurements, such as the generated force or distances in the movingsystem. Furthermore, for many envisioned applications of syntheticmotors, it will be a requirement to guide and control directed motions.We therefore also provide a perspective on how motors can be observed on structures that allow for directional guidance, such asnanowires and microchannels. Thus, this Review facilitates the future research on synthetic molecular motors, where observations ata single-motor level and a detailed characterization of motion will promote applications

    Analysis of Host Immunological Response of Adenovirus-Based COVID-19 Vaccines

    No full text
    During the SARS-CoV-2 global pandemic, several vaccines, including mRNA and adenovirus vector approaches, have received emergency or full approval. However, supply chain logistics have hampered global vaccine delivery, which is impacting mass vaccination strategies. Recent studies have identified different strategies for vaccine dose administration so that supply constraints issues are diminished. These include increasing the time between consecutive doses in a two-dose vaccine regimen and reducing the dosage of the second dose. We consider both of these strategies in a mathematical modeling study of a non-replicating viral vector adenovirus vaccine in this work. We investigate the impact of different prime-boost strategies by quantifying their effects on immunological outcomes based on simple system of ordinary differential equations. The boost dose is administered either at a standard dose (SD) of 1000 or at a low dose (LD) of 500 or 250 vaccine particles. Results show dose-dependent immune response activity. Our model predictions show that by stretching the prime-boost interval to 18 or 20, in an SD/SD or SD/LD regimen, the minimum promoted antibody (Nab) response will be comparable with the neutralizing antibody level measured in COVID-19 recovered patients. Results also show that the minimum stimulated antibody in SD/SD regimen is identical with the high level observed in clinical trial data. We conclude that an SD/LD regimen may provide protective capacity, which will allow for conservation of vaccine doses

    Motility of an autonomous protein-based artificial motor that operates via a burnt-bridge principle

    No full text
    Abstract Inspired by biology, great progress has been made in creating artificial molecular motors. However, the dream of harnessing proteins – the building blocks selected by nature – to design autonomous motors has so far remained elusive. Here we report the synthesis and characterization of the Lawnmower, an autonomous, protein-based artificial molecular motor comprised of a spherical hub decorated with proteases. Its “burnt-bridge” motion is directed by cleavage of a peptide lawn, promoting motion towards unvisited substrate. We find that Lawnmowers exhibit directional motion with average speeds of up to 80 nm/s, comparable to biological motors. By selectively patterning the peptide lawn on microfabricated tracks, we furthermore show that the Lawnmower is capable of track-guided motion. Our work opens an avenue towards nanotechnology applications of artificial protein motors
    corecore