13 research outputs found

    Motility of an autonomous protein-based artificial motor that operates via a burnt-bridge principle

    Full text link
    Inspired by biology, great progress has been made in creating artificial molecular motors. However, the dream of harnessing proteins – the building blocks selected by nature – to design autonomous motors has so far remained elusive. Here we report the synthesis and characterization of the Lawnmower, an autonomous, protein-based artificial molecular motor comprised of a spherical hub decorated with proteases. Its “burnt-bridge” motion is directed by cleavage of a peptide lawn, promoting motion towards unvisited substrate. We find that Lawnmowers exhibit directional motion with average speeds of up to 80 nm/s, comparable to biological motors. By selectively patterning the peptide lawn on microfabricated tracks, we furthermore show that the Lawnmower is capable of track-guided motion. Our work opens an avenue towards nanotechnology applications of artificial protein motors

    Calcium and cancer: targeting Ca2+ transport

    No full text
    Ca2+ is a ubiquitous cellular signal. Altered expression of specific Ca2+ channels and pumps are characterizing features of some cancers. The ability of Ca2+ to regulate both cell death and proliferation, combined with the potential for pharmacological modulation, offers the opportunity for a set of new drug targets in cancer. However, the ubiquity of the Ca2+ signal is often mistakenly presumed to thwart the specific therapeutic targeting of proteins that transport Ca2+. This Review presents evidence to the contrary and addresses the question: which Ca2+ channels and pumps should be targeted

    25 Years of Contrast-Enhanced MRI : Developments, Current Challenges and Future Perspectives

    Get PDF
    UNLABELLED: In 1988, the first contrast agent specifically designed for magnetic resonance imaging (MRI), gadopentetate dimeglumine (Magnevist(®)), became available for clinical use. Since then, a plethora of studies have investigated the potential of MRI contrast agents for diagnostic imaging across the body, including the central nervous system, heart and circulation, breast, lungs, the gastrointestinal, genitourinary, musculoskeletal and lymphatic systems, and even the skin. Today, after 25 years of contrast-enhanced (CE-) MRI in clinical practice, the utility of this diagnostic imaging modality has expanded beyond initial expectations to become an essential tool for disease diagnosis and management worldwide. CE-MRI continues to evolve, with new techniques, advanced technologies, and novel contrast agents bringing exciting opportunities for more sensitive, targeted imaging and improved patient management, along with associated clinical challenges. This review aims to provide an overview on the history of MRI and contrast media development, to highlight certain key advances in the clinical development of CE-MRI, to outline current technical trends and clinical challenges, and to suggest some important future perspectives. FUNDING: Bayer HealthCare

    Acute pulmonary embolism multimodality imaging prior to endovascular therapy

    No full text
    corecore