21 research outputs found

    Engineering the Drosophila Genome for Developmental Biology.

    Get PDF
    The recent development of transposon and CRISPR-Cas9-based tools for manipulating the fly genome in vivo promises tremendous progress in our ability to study developmental processes. Tools for introducing tags into genes at their endogenous genomic loci facilitate imaging or biochemistry approaches at the cellular or subcellular levels. Similarly, the ability to make specific alterations to the genome sequence allows much more precise genetic control to address questions of gene function.BBSRC BB/L002817/1 and BB/N007069/

    CCR6 activation links innate immune responses to mucosa-associated lymphoid tissue lymphoma development

    Get PDF
    The genesis of extranodal marginal zone lymphoma of mucosa-associated lymphoid tissue (MALT) is driven by oncogenic co-operation among immunological stimulations and acquired genetic changes. We previously identified recurrent CCR6 mutations in MALT lymphoma, with majority predicted to result in truncated proteins lacking the phosphorylation motif important for receptor desensitization. Functional consequences of these mutational changes, the molecular mechanisms of CCR6 activation and how this receptor signaling contributes to MALT lymphoma development remain to be investigated. In the present study, we demonstrated that these mutations impaired CCR6 receptor internalization and were activating changes, being more potent in apoptosis resistance, malignant transformation, migration and intracellular signaling, particularly in the presence of the ligands CCL20, HBD2 (human beta defensin 2) and HD5 (human alpha defensin 5). CCR6 was highly expressed in malignant B cells irrespective of the lymphoma sites. HBD2 and CCL20 were constitutively expressed by the duct epithelial cells of salivary glands, and also those involved in lymphoepithelial lesions (LEL) in salivary gland MALT lymphoma. While in the gastric setting, HBD2, and HD5, to a less extent CCL20, were highly expressed in epithelial cells of pyloric and intestinal metaplasia respectively including those involved in LEL, which are adaptive responses to chronic Helicobacter pylori infection. These findings suggest that CCR6 signaling is most likely active in MALT lymphoma, independent of its mutation status. The observations explain why the emergence of malignant B cells and their clonal expansion in MALT lymphoma are typically around LEL, linking the innate immune responses to lymphoma genesis

    SWATH-MS data of Drosophila melanogaster proteome dynamics during embryogenesis

    Get PDF
    AbstractEmbryogenesis is one of the most important processes in the life of an animal. During this dynamic process, progressive cell division and cellular differentiation are accompanied by significant changes in protein expression at the level of the proteome. However, very few studies to date have described the dynamics of the proteome during the early development of an embryo in any organism. In this dataset, we monitor changes in protein expression across a timecourse of more than 20h of Drosophila melanogaster embryonic development. Mass-spectrometry data were produced using a SWATH acquisition mode on a Sciex Triple-TOF 6600. A spectral library built in-house was used to analyse these data and more than 1950 proteins were quantified at each embryonic timepoint. The files presented here are a permanent digital map and can be reanalysed to test against new hypotheses. The data have been deposited with the ProteomeXchange Consortium with the dataset identifier PRIDE: PXD0031078

    Characterisation of protein isoforms encoded by the Drosophila Glycogen Synthase Kinase 3 gene shaggy

    Get PDF
    The Drosophila shaggy gene (sgg, GSK-3) encodes multiple protein isoforms with serine/threonine kinase activity and is a key player in diverse developmental signalling pathways. Currently it is unclear whether different Sgg proteoforms are similarly involved in signalling or if different proteoforms have distinct functions. We used CRISPR/Cas9 genome engineering to tag eight different Sgg proteoform classes and determined their localization during embryonic development. We performed proteomic analysis of the two major proteoform classes and generated mutant lines for both of these for transcriptomic and phenotypic analysis. We uncovered distinct tissue-specific localization patterns for all of the tagged proteoforms we examined, most of which have not previously been characterised directly at the protein level, including one proteoform initiating with a non-standard codon. Collectively, this suggests complex developmentally regulated splicing of the sgg primary transcript. Further, affinity purification followed by mass spectrometric analyses indicate a different repertoire of interacting proteins for the two major proteoforms we examined, one with ubiquitous expression (Sgg-PB) and one with nervous system specific expression (Sgg-PA). Specific mutation of these proteoforms shows that Sgg-PB performs the well characterised maternal and zygotic segmentations functions of the sgg locus, while Sgg-PA mutants show adult lifespan and locomotor defects consistent with its nervous system localisation. Our findings provide new insights into the role of GSK-3 proteoforms and intriguing links with the GSK-3α and GSK-3β proteins encoded by independent vertebrate genes. Our analysis suggests that different proteoforms generated by alternative splicing are likely to perform distinct functions

    Synthesis and Biological Activity of Piperidinothiosemicarbazones Derived from Aminoazinecarbonitriles

    No full text
    To investigate how structural modifications affect tuberculostatic potency, we synthesized seven new piperidinothiosemicrabazone derivatives 8–14, in which three of them had a pyrazine ring replacing the pyridine ring. Derivatives 8–9 and 13–14 exhibited significant activity against the standard strain (minimum inhibitory concentration (MIC) 2–4 μg/mL) and even greater activity against the resistant M. tuberculosis strain (MIC 0.5–4 μg/mL). Additionally, the effects of compounds 8–9 were entirely selective (MIC toward other microorganisms ≥ 1000 μg/mL) and non-toxic (IC50 to HaCaT cells 5.8 to >50 μg/mL). The antimycobacterial activity of pyrazine derivatives 11–12 was negligible (MIC 256 to >500 μg/mL), indicating that replacing the aromatic ring was generally not a promising line of research in this case. The zwitterionic structure of compound 11 was determined using X-ray crystallography. Absorption, distribution, metabolism, and excretion (ADME) calculations showed that all compounds, except 11, could be considered for testing as future drugs. An analysis of the structure–activity relationship was carried out, indicating that the higher basicity of the substituent located at the heteroaromatic ring might be of particular importance for the antituberculous activity of the tested groups of compounds
    corecore