99 research outputs found

    Use of the interRAI CHESS Scale to Predict Mortality among Persons with Neurological Conditions in Three Care Settings

    Get PDF
    Background: Persons with certain neurological conditions have higher mortality rates than the population without neurological conditions, but the risk factors for increased mortality within diagnostic groups are less well understood. The interRAI CHESS scale has been shown to be a strong predictor of mortality in the overall population of persons receiving health care in community and institutional settings. This study examines the performance of CHESS as a predictor of mortality among persons with 11 different neurological conditions. Methods: Survival analyses were done with interRAI assessments linked to mortality data among persons in home care (n = 359,940), complex continuing care hospitals/units (n = 88,721), and nursing homes (n = 185,309) in seven Canadian provinces/territories. Results: CHESS was a significant predictor of mortality in all 3 care settings for the 11 neurological diagnostic groups considered after adjusting for age and sex. The distribution of CHESS scores varied between diagnostic groups and within diagnostic groups in different care settings. Conclusions: CHESS is a valid predictor of mortality in neurological populations in community and institutional care. It may prove useful for several clinical, administrative, policy-development, evaluation and research purposes. Because it is routinely gathered as part of normal clinical practice in jurisdictions (like Canada) that have implemented interRAI assessment instruments, CHESS can be derived without additional need for data collection.Public Health Agency of Canada, Project #6271-15-2010/3970773, Ontario Home Care Research and Knowledge Exchange Chair (to JPH) through the Ontario Ministry of Health and Long Term Car

    90GHz and 150GHz observations of the Orion M42 region. A sub-millimeter to radio analysis

    Full text link
    We have used the new 90GHz MUSTANG camera on the Robert C. Byrd Green Bank Telescope (GBT) to map the bright Huygens region of the star-forming region M42 with a resolution of 9" and a sensitivity of 2.8mJy/beam. 90GHz is an interesting transition frequency, as MUSTANG detects both the free-free emission characteristic of the HII region created by the Trapezium stars, normally seen at lower frequencies, and thermal dust emission from the background OMC1 molecular cloud, normally mapped at higher frequencies. We also present similar data from the 150GHz GISMO camera taken on the IRAM telescope. This map has 15" resolution. By combining the MUSTANG data with 1.4, 8, and 21GHz radio data from the VLA and GBT, we derive a new estimate of the emission measure (EM) averaged electron temperature of Te = 11376K by an original method relating free-free emission intensities at optically thin and optically thick frequencies. Combining ISO-LWS data with our data, we derive a new estimate of the dust temperature and spectral emissivity index within the 80" ISO-LWS beam toward OrionKL/BN, Td = 42K and Beta=1.3. We show that both Td and Beta decrease when going from the HII region and excited OMC1 interface to the denser UV shielded part of OMC1 (OrionKL/BN, Orion S). With a model consisting of only free-free and thermal dust emission we are able to fit data taken at frequencies from 1.5GHz to 854GHz.Comment: 18 pages, 8 figures, submitted to the Astrophysical Journa

    Implications of a High Angular Resolution Image of the Sunyaev-Zel'dovich Effect in RXJ1347-1145

    Full text link
    The most X-ray luminous cluster known, RXJ1347-1145 (z=0.45), has been the object of extensive study across the electromagnetic spectrum. We have imaged the Sunyaev-Zel'dovich Effect (SZE) at 90 GHz (3.3 mm) in RXJ1347-1145 at 10" resolution with the 64-pixel MUSTANG bolometer array on the Green Bank Telescope (GBT), confirming a previously reported strong, localized enhancement of the SZE 20" to the South-East of the center of X-ray emission. This enhancement of the SZE has been interpreted as shock-heated (> 20 keV) gas caused by an ongoing major (low mass-ratio) merger event. Our data support this interpretation. We also detect a pronounced asymmetry in the projected cluster pressure profile, with the pressure just east of the cluster core ~1.6 times higher than just to the west. This is the highest resolution image of the SZE made to date.Comment: 9 pages, 7 figures; accepted for publication in The Astrophysical Journa

    Observations of M87 and Hydra A at 90 GHz

    Full text link
    This paper presents new observations of the AGNs M87 and Hydra A at 90 GHz made with the MUSTANG bolometer array on the Green Bank Telescope at 8.5" resolution. A spectral analysis is performed combining this new data and archival VLA data on these objects at longer wavelengths. This analysis can detect variations in spectral index and curvature expected from energy losses in the radiating particles. M87 shows only weak evidence for steepening of the spectrum along the jet suggesting either re-acceleration of the relativistic particles in the jet or insufficient losses to affect the spectrum at 90 GHz. The jets in Hydra A show strong steepening as they move from the nucleus suggesting unbalanced losses of the higher energy relativistic particles. The difference between these two sources may be accounted for by the different lengths over which the jets are observable, 2 kpc for M87 and 45 kpc for Hydra A.Comment: 11 pages, submitted to Ap

    Spitzer Observations of the North Ecliptic Pole

    Get PDF
    We present a photometric catalog for Spitzer Space Telescope warm mission observations of the North Ecliptic Pole (NEP; centered at R.A.=18h00m00s\rm R.A.=18^h00^m00^s, Decl.=66d33m38s.552\rm Decl.=66^d33^m38^s.552). The observations are conducted with IRAC in 3.6 μ\mum and 4.5 μ\mum bands over an area of 7.04 deg2^2 reaching 1σ\sigma depths of 1.29 μ\muJy and 0.79 μ\muJy in the 3.6 μ\mum and 4.5 μ\mum bands respectively. The photometric catalog contains 380,858 sources with 3.6 μ\mum and 4.5 μ\mum band photometry over the full-depth NEP mosaic. Point source completeness simulations show that the catalog is 80% complete down to 19.7 AB. The accompanying catalog can be utilized in constraining the physical properties of extra-galactic objects, studying the AGN population, measuring the infrared colors of stellar objects, and studying the extra-galactic infrared background light.Comment: 10 pages, 11 figures and 3 tables. Accepted to the ApJ

    MUSTANG: 90 GHz Science with the Green Bank Telescope

    Full text link
    MUSTANG is a 90 GHz bolometer camera built for use as a facility instrument on the 100 m Robert C. Byrd Green Bank radio telescope (GBT). MUSTANG has an 8 by 8 focal plane array of transition edge sensor bolometers read out using time-domain multiplexed SQUID electronics. As a continuum instrument on a large single dish MUSTANG has a combination of high resolution (8") and good sensitivity to extended emission which make it very competitive for a wide range of galactic and extragalactic science. Commissioning finished in January 2008 and some of the first science data have been collected.Comment: 9 Pages, 5 figures, Presented at the SPIE conference on astronomical instrumentation in 200

    Science Impacts of the SPHEREx All-Sky Optical to Near-Infrared Spectral Survey II: Report of a Community Workshop on the Scientific Synergies Between the SPHEREx Survey and Other Astronomy Observatories

    Get PDF
    SPHEREx is a proposed NASA MIDEX mission selected for Phase A study. SPHEREx would carry out the first all-sky spectral survey in the near infrared. At the end of its two-year mission, SPHEREx would obtain 0.75-to-5μm spectra of every 6.2 arcsec pixel on the sky, with spectral resolution R>35 and a 5-σ sensitivity AB>19 per spectral/spatial resolution element. More details concerning SPHEREx are available at http://spherex.caltech.edu. The SPHEREx team has proposed three specific science investigations to be carried out with this unique data set: cosmic inflation, interstellar and circumstellar ices, and the extra-galactic background light. Though these three themes are undoubtedly compelling, they are far from exhausting the scientific output of SPHEREx. Indeed, SPHEREx would create a unique all-sky spectral database including spectra of very large numbers of astronomical and solar system targets, including both extended and diffuse sources. These spectra would enable a wide variety of investigations, and the SPHEREx team is dedicated to making the data available to the community to enable these investigations, which we refer to as Legacy Science. To that end, we have sponsored two workshops for the general scientific community to identify the most interesting Legacy Science themes and to ensure that the SPHEREx data products are responsive to their needs. In February of 2016, some 50 scientists from all fields met in Pasadena to develop these themes and to understand their implications for the SPHEREx mission. The 2016 workshop highlighted many synergies between SPHEREx and other contemporaneous astronomical missions, facilities, and databases. Consequently, in January 2018 we convened a second workshop at the Center for Astrophysics in Cambridge to focus specifically on these synergies. This white paper reports on the results of the 2018 SPHEREx workshop

    CARMA Measurements of the Sunyaev-Zel'dovich Effect in RXJ1347.5-1145

    Get PDF
    We demonstrate the Sunyaev-Zel'dovich (SZ) effect imaging capabilities of the Combined Array for Research in Millimeter-wave Astronomy (CARMA) by presenting an SZ map of the galaxy cluster RXJ1347.5-1145. By combining data from multiple CARMA bands and configurations, we are able to capture the structure of this cluster over a wide range of angular scales, from its bulk properties to its core morphology. We find that roughly 9% of this cluster's thermal energy is associated with sub-arcminute-scale structure imparted by a merger, illustrating the value of high-resolution SZ measurements for pursuing cluster astrophysics and for understanding the scatter in SZ scaling relations. We also find that the cluster's SZ signal is lower in amplitude than suggested by a spherically-symmetric model derived from X-ray data, consistent with compression along the line of sight relative to the plane of the sky. Finally, we discuss the impact of upgrades currently in progress that will further enhance CARMA's power as an SZ imaging instrument.Comment: 8 pages, 6 figure

    Science Impacts of the SPHEREx All-Sky Optical to Near-Infrared Spectral Survey: Report of a Community Workshop Examining Extragalactic, Galactic, Stellar and Planetary Science

    Get PDF
    SPHEREx is a proposed SMEX mission selected for Phase A. SPHEREx will carry out the first all-sky spectral survey and provide for every 6.2" pixel a spectra between 0.75 and 4.18 μm [with R∼41.4] and 4.18 and 5.00 μm [with R∼135]. The SPHEREx team has proposed three specific science investigations to be carried out with this unique data set: cosmic inflation, interstellar and circumstellar ices, and the extra-galactic background light. It is readily apparent, however, that many other questions in astrophysics and planetary sciences could be addressed with the SPHEREx data. The SPHEREx team convened a community workshop in February 2016, with the intent of enlisting the aid of a larger group of scientists in defining these questions. This paper summarizes the rich and varied menu of investigations that was laid out. It includes studies of the composition of main belt and Trojan/Greek asteroids; mapping the zodiacal light with unprecedented spatial and spectral resolution; identifying and studying very low-metallicity stars; improving stellar parameters in order to better characterize transiting exoplanets; studying aliphatic and aromatic carbon-bearing molecules in the interstellar medium; mapping star formation rates in nearby galaxies; determining the redshift of clusters of galaxies; identifying high redshift quasars over the full sky; and providing a NIR spectrum for most eROSITA X-ray sources. All of these investigations, and others not listed here, can be carried out with the nominal all-sky spectra to be produced by SPHEREx. In addition, the workshop defined enhanced data products and user tools which would facilitate some of these scientific studies. Finally, the workshop noted the high degrees of synergy between SPHEREx and a number of other current or forthcoming programs, including JWST, WFIRST, Euclid, GAIA, K2/Kepler, TESS, eROSITA and LSST
    corecore