4 research outputs found

    Paediatric Photon and Proton Radiotherapy Treatment Planning Based on Advanced Imaging

    No full text

    PET/CT-guided treatment planning for paediatric cancer patients: a simulation study of proton and conventional photon therapy

    No full text
    OBJECTIVE: To investigate the impact of including fluorine-18 fludeoxyglucose ((18)F-FDG) positron emission tomography (PET) scanning in the planning of paediatric radiotherapy (RT). METHODS: Target volumes were first delineated without and subsequently re-delineated with access to (18)F-FDG PET scan information, on duplicate CT sets. RT plans were generated for three-dimensional conformal photon RT (3DCRT) and intensity-modulated proton therapy (IMPT). The results were evaluated by comparison of target volumes, target dose coverage parameters, normal tissue complication probability (NTCP) and estimated risk of secondary cancer (SC). RESULTS: Considerable deviations between CT- and PET/CT-guided target volumes were seen in 3 out of the 11 patients studied. However, averaging over the whole cohort, CT or PET/CT guidance introduced no significant difference in the shape or size of the target volumes, target dose coverage, irradiated volumes, estimated NTCP or SC risk, neither for IMPT nor 3DCRT. CONCLUSION: Our results imply that the inclusion of PET/CT scans in the RT planning process could have considerable impact for individual patients. There were no general trends of increasing or decreasing irradiated volumes, suggesting that the long-term morbidity of RT in childhood would on average remain largely unaffected. ADVANCES IN KNOWLEDGE: (18)F-FDG PET-based RT planning does not systematically change NTCP or SC risk for paediatric cancer patients compared with CT only. 3 out of 11 patients had a distinct change of target volumes when PET-guided planning was introduced. Dice and mismatch metrics are not sufficient to assess the consequences of target volume differences in the context of RT
    corecore