1,516 research outputs found
Computing Integer Powers in Floating-Point Arithmetic
We introduce two algorithms for accurately evaluating powers to a positive
integer in floating-point arithmetic, assuming a fused multiply-add (fma)
instruction is available. We show that our log-time algorithm always produce
faithfully-rounded results, discuss the possibility of getting correctly
rounded results, and show that results correctly rounded in double precision
can be obtained if extended-precision is available with the possibility to
round into double precision (with a single rounding).Comment: Laboratoire LIP : CNRS/ENS Lyon/INRIA/Universit\'e Lyon
Impact of PET in the Radiation Therapy Planning for Pediatric Cancer
I Sverige drabbas omkring 300 barn av cancer varje Ă„r och majoriteten av dem Ă€r bara fyra-fem Ă„r gamla nĂ€r de fĂ„r sin diagnos. Omkring tvĂ„ tredjedelar av barncancerdiagnoserna utgörs av leukemier, lymfom och hjĂ€rntumörer, medan den sista tredjedelen Ă€r olika solida tumörformer som njurtumörer och nervvĂ€vnadstumörer i buken. CancersjukvĂ„rdens utveckling under de senaste Ă„rtiondena har medfört en avsevĂ€rt förbĂ€ttrad prognos för flertalet cancerdiagnoser. UngefĂ€r tre fjĂ€rdedelar av barncancerpatienterna blir idag helt botade. De frĂ€msta behandlingsmetoderna Ă€r kirurgi, kemoterapi (cellgifter) och strĂ„lbehandling och de kan kombineras pĂ„ olika sĂ€tt. I Sverige strĂ„lbehandlas ungefĂ€r hĂ€lften av alla cancerpatienter, och cirka en tredjedel av barncancerpatienterna, nĂ„gon gĂ„ng under sin sjukdomstid. StrĂ„lbehandlingen gĂ„r ut pĂ„ att en viss strĂ„ldos levereras till en specifik mĂ„lvolym, som oftast utgörs av sjĂ€lva tumören inklusive marginaler. StrĂ„lningen som anvĂ€nds har tillrĂ€ckligt hög energi för att orsaka skador pĂ„ kroppens celler, till exempel genom att jonisera atomer och bryta molekylbindningar. Detta kan bland annat pĂ„verka DNA-molekylen i cellkĂ€rnan. TyvĂ€rr Ă€r det ofrĂ„nkomligt att Ă€ven friska celler bestrĂ„las, och givetvis kan strĂ„lningen orsaka bestĂ„ende pĂ„verkan Ă€ven inuti dessa. Skadorna motarbetas dock av de reparationsprocesser som stĂ€ndigt pĂ„gĂ„r i kroppen och lyckligtvis nog sker reparationen oftast betydligt mer effektivt i de friska cellerna Ă€n i tumörceller. För att undvika skador i frisk vĂ€vnad Ă€r det dock viktigt att inte bestrĂ„la en onödigt stor volym. Att skona den friska vĂ€vnaden men samtidigt leverera en tillrĂ€ckligt hög dos till tumören Ă€r en av de största utmaningarna inom modern strĂ„lbehandling. Detta Ă€r Ă€nnu viktigare för unga patienter, eftersom barn Ă€r extra kĂ€nsliga för strĂ„lning och riskerna för negativa bieffekter Ă€r större Ă€n hos vuxna. Dessutom har barn fler levnadsĂ„r framför sig Ă€n vuxna patienter, vilket innebĂ€r fler Ă„r för komplikationer att hinna utvecklas och ge besvĂ€r. Inom extern strĂ„lbehandling har det under de senaste Ă„rtiondena utvecklats nya behandlingstekniker. I kombination med CT-baserad (Computed Tomography, datortomografi) dosplanering har dessa förbĂ€ttrat möjligheterna att mer exakt leverera strĂ„ldos till den önskade mĂ„lvolymen. Denna mer konforma dosfördelning gör det möjligt att öka den absorberade dosen till tumören utan att öka strĂ„ldosen till omgivande frisk vĂ€vnad. Den gör det ocksĂ„ möjligt att minska behandlingsmarginalerna, men detta innebĂ€r i sin tur att det blir Ă€nnu viktigare sĂ€kerstĂ€lla vilken volym som behöver behandlas. Behovet av att komplettera traditionella undersökningsmetoder som CT med andra informationskĂ€llor har ökat. PET (positronemissionstomografi) Ă€r en nuklearmedicinsk bildtagningsmodalitet som blivit ett allt viktigare komplement till CT vid diagnostisering och behandlingsplanering av cancersjukdomar. Precis som vid de flesta nuklearmedicinska undersökningar injiceras ett radioaktivt preparat i patienten. Aktiviteten fördelar sig i patientens kropp och kan avbildas med hjĂ€lp av olika detektorer. Genom att fĂ€sta den radioaktiva isotopen till en molekyl med kĂ€nt biologiskt rörelsemönster kan man till viss del styra var i kroppen aktiviteten ska hamna. Vid PET-scanning anvĂ€nds ofta den radioaktiva isotopen fluor-18 som fĂ€sts vid en glukosliknande molekyl. Glukos (druvsocker) Ă€r en viktig energikĂ€lla och tas upp av celler i proportion till deras Ă€mnesomsĂ€ttning. Detta innebĂ€r att radioaktiviteten ackumuleras i celler med hög metabolism â nĂ„got som ofta Ă€r fallet med maligna tumörceller. PET-bilden kan dĂ€rmed vara till stor hjĂ€lp vid inritningen av mĂ„lvolymer. Syftet med denna studie Ă€r att studera om â och i sĂ„ fall hur â mĂ„lvolymerna Ă€ndras av att den kliniska informationen kompletteras med PET-bilder. StrĂ„lbehandlingsplaner har gjorts till bĂ„da varianter och för ett flertal strĂ„lbehandlingstekniker. MĂ„let Ă€r att med hjĂ€lp av teoretiska modeller baserade pĂ„ publicerade data försöka upptĂ€cka och kvantifiera skillnader mellan planerna med och utan PET, med avseende pĂ„ risken för komplikationer. Resultaten visar att anvĂ€ndningen av PET kan förĂ€ndra mĂ„lvolymerna till sĂ„vĂ€l storlek som form. Trots detta var det inte möjligt att pĂ„visa nĂ„gon signifikant förĂ€ndring av riskerna för komplikationer av sjĂ€lva strĂ„lbehandlingen.Purpose: The purpose of this study was to evaluate the impact of including PET (Positron Emission Tomography) in the process of pediatric radiation therapy planning. The aim was to study the effect on target volumes and how this in turn affects the resulting treatment plans. This study also aims to compare the estimated risks of various long-term complications and how the use of PET influences these risks. Methods: Eleven pediatric sarcoma, NSCLC (non-small-cell lung cancer) and nasopharyngeal cancer patients, treated at Rigshospitalet in 2005-2011, were included in this study. The target volumes (GTV:s and CTV:s) were delineated by senior clinicians specialized in nuclear medicine, diagnostic radiology and radiation oncology. The delineation was performed without and subsequently with access to the PET scan information, on separate CT-sets. A margin of 6 mm was added to each CTV to render the PTV. Treatment plans were generated for three different photon therapy modalities and intensity-modulated proton therapy. Dose-effects models based on published studies were derived to evaluate and compare the risks of complications. Moreover, a rough estimation of the effective dose from the PET/CT scan and the associated risk was made. Results: The target volumes were evaluated with respect to volume size as well as shape. For the patients in this study, there was no significant change of the size of the target volumes: the average CTV size was 257 cm3 (range: 71.10-462.40 cm3, median 259.60 cm3) and 254 cm3 (range: 63.43-497.30 cm3, median 211.90 cm3) without and with PET respectively. Using PET did in some cases alter the shape of the treatment volumes, resulting in a mean Dice index of 0.91 (range: 0.86-0.95). The radiation therapy plans based on PET data were not significantly different from the noPET-plans, in neither the risk of normal tissue complications, nor the risk of secondary cancers. The impact of PET did not differ between the four treatment modalities. Conclusions: The main conclusion from this study is that while including PET in the radiation therapy treatment planning process of pediatric cancer patients may change the shape and size of the target volume, it does not significantly impact the risks attributable to the radiation therapy, neither of normal tissue complications nor secondary cancers. The risk of radiation-induced complications from the PET/CT scan is very small. The target volume may be decreased by including PET, when areas dubious on the CT are FDG-negative. This gives the potential to reduce the irradiated normal tissue volume. The PET-based target volume may be expanded for FDG-positive areas that are undistinguishable on the CT-images. This will likely decrease the risk of leaving malignant tissue untreated. The results suggest that there will be no significant differences between radiation therapy plans made with or without PET-data. The plans appear to be of comparable quality (provided that the therapeutic efficacy is maintained) and the risk of long-term complications is not changed. A vast amount of published results from more than a decade of research and clinical experience, indicate the usefulness and diagnostic value of including PET-data into the care of cancer patients â adults as well as children. Taking these factors into consideration, along with the very low risks of radiation-induced side effects from the PET/CT scan itself, the conclusion is that PET should be used as a complementary tool in target volume delineation for radiation therapy planning of pediatric patients
Report from »Symposium fiber Hamster und Gerbil«
No abstract availabl
Are We Using the Most Appropriate Animals for Our Research and Are We Doing It for the Best Reasons?
Over the last 50 years there have been demands to increase the quality of animals used for research. The numbers of animals used for individual projects have in the same period decreased, while the efforts put on the single animal to secure the highest scientific output from it have increased. Basically this is a very important part of both ârefinementâ and âreductionâ; those two of the three Râs which, it previously has been argued, were less in focus than the last R, âreplacementâ (Nevalainen, 2005).
Considering the microbiota to achieve reduction in the numbers of animals used in scientific studies
Elimination of pathogens by laboratory rodent commercial vendors has substantially improvedstandardized conditions as well as laboratory animal welfare. However, pathogensare also important for basic activation and functioning of the immune system withconsequential influences on the symbiotic bacteria composition in the individual microbiota.One of the reasons for failures of translating results from preclinical researchto the clinical phase in some studies could be due to unintentional selection processes.Some recommendations are provided to increase researchersâ awareness on this point,together with a practical checklist to optimize information from microbiota knowledge
Statistical aspects of health monitoring of laboratory animal colonies
Sample size, sampling frequency and the importance of random sampling in health monitoring of colonies of laboratory animals are discussed and the terms nosographic sensitivity (N1), nosographic specificity (N2), diagnostic sensitivity {D1}, and diagnostic specificity (D2) are explained. It is concluded that test systems with a diagnostic specificity above 0.95 should be chosen, while a low nosographic sensitivity can be accepted, if the sample size (S) is calculated from the formulain which p is the prevalence
The aerobic bacterial flora of laboratory rats from a danish breeding centre
The aerobic bacterial flora of barrier-maintained laboratory rats from 12 ditferent units was examined by the use of non-seleetive bacteriological cultivation. All rats were randomly sampled healthy rats. The number of infected clonies out of thetotal number of examined colonies is given with the mean prevalence observed within the colonies for each of the bacterial species identified. The minimal sample size for detection of the organisms in routine microbiological] monitoring is estimated on basis 01' the prevalences observed. Bacterial species from the groups Micrococcaceae, Streptococcaceae, Lactobacillus spp, Bacillus spp, Corynebacterium spp. Enterobacteriaceae, Neisseriaceae, Pasteurellaceae and Pseudomanadaceaewere found. The most frequently isolated species was Staphylococcus aureus in the respiratory organs and Escericia coli in the intestines. The prevalence of the different bacterial species within the colonies varied from 3.1 to 69.3. The minimal sample size for each bacterial species varies from 3 to 95
- âŠ