95 research outputs found
Electronic correlation in the infrared optical properties of the quasi two dimensional -type BEDT-TTF dimer system
The polarized optical reflectance spectra of the quasi two dimensional
organic correlated electron system -(BEDT-TTF)Cu[N(CN)],
Br and Cl are measured in the infrared region. The former shows the
superconductivity at 11.6 K and the latter does the
antiferromagnetic insulator transition at 28 K. Both the
specific molecular vibration mode of the BEDT-TTF molecule and
the optical conductivity hump in the mid-infrared region change correlatively
at 38 K of -(BEDT-TTF)Cu[N(CN)]Br, although
no indication of but the insulating behaviour below 50-60 K are found in -(BEDT-TTF)Cu[N(CN)]Cl. The
results suggest that the electron-molecular vibration coupling on the
mode becomes weak due to the enhancement of the itinerant
nature of the carriers on the dimer of the BEDT-TTF molecules below ,
while it does strong below because of the localized carriers on
the dimer. These changes are in agreement with the reduction and the
enhancement of the mid-infrared conductivity hump below and , respectively, which originates from the transitions between the upper
and lower Mott-Hubbard bands. The present observations demonstrate that two
different metallic states of -(BEDT-TTF)Cu[N(CN)]Br are
regarded as {\it a correlated good metal} below including the
superconducting state and {\it a half filling bad metal} above . In
contrast the insulating state of -(BEDT-TTF)Cu[N(CN)]Cl
below is the Mott insulator.Comment: 8 pages, 7 figure
Competition between Charge Ordering and Superconductivity in Layered Organic Conductors -(BEDT-TTF)Hg(SCN) (M = K, NH)
While the optical properties of the superconducting salt
-(BEDT-TTF)NHHg(SCN) remain metallic down to 2 K, in the
non-superconducting K-analog a pseudogap develops at frequencies of about 200
cm for temperatures T < 200 K. Based on exact diagonalisation
calculations on an extended Hubbard model at quarter-filling we argue that
fluctuations associated with short range charge ordering are responsible for
the observed low-frequency feature. The different ground states, including
superconductivity, are a consequence of the proximity of these compounds to a
quantum phase charge-ordering transition driven by the intermolecular Coulomb
repulsion.Comment: 4 pages, 3 figure
On-chain electrodynamics of metallic (TMTSF)_2 X salts: Observation of Tomonaga-Luttinger liquid response
We have measured the electrodynamic response in the metallic state of three
highly anisotropic conductors, (TMTSF)_2 X, where X=PF_6, AsF_6, or ClO_4, and
TMTSF is the organic molecule tetramethyltetraselenofulvalene. In all three
cases we find dramatic deviations from a simple Drude response. The optical
conductivity has two features: a narrow mode at zero frequency, with a small
spectral weight, and a mode centered around 200 cm^{-1}, with nearly all of the
spectral weight expected for the relevant number of carriers and single
particle bandmass. We argue that these features are characteristic of a nearly
one-dimensional half- or quarter-filled band with Coulomb correlations, and
evaluate the finite energy mode in terms of a one-dimensional Mott insulator.
At high frequencies (\hbar\omega > t_\perp, the transfer integral perpendicular
to the chains), the frequency dependence of the optical conductivity
\sigma_1(\omega) is in agreement with calculations based on an interacting
Tomonaga-Luttinger liquid, and is different from what is expected for an
uncorrelated one-dimensional semiconductor. The zero frequency mode shows
deviations from a simple Drude response, and can be adequately described with a
frequency dependent mass and relaxation rate.Comment: 12 pages, 7 figures, RevTeX; minor corrections to text and
references; To be published in Phys. Rev. B, 15 July 199
Transport properties of strongly correlated metals:a dynamical mean-field approach
The temperature dependence of the transport properties of the metallic phase
of a frustrated Hubbard model on the hypercubic lattice at half-filling are
calculated. Dynamical mean-field theory, which maps the Hubbard model onto a
single impurity Anderson model that is solved self-consistently, and becomes
exact in the limit of large dimensionality, is used. As the temperature
increases there is a smooth crossover from coherent Fermi liquid excitations at
low temperatures to incoherent excitations at high temperatures. This crossover
leads to a non-monotonic temperature dependence for the resistance,
thermopower, and Hall coefficient, unlike in conventional metals. The
resistance smoothly increases from a quadratic temperature dependence at low
temperatures to large values which can exceed the Mott-Ioffe-Regel value, hbar
a/e^2 (where "a" is a lattice constant) associated with mean-free paths less
than a lattice constant. Further signatures of the thermal destruction of
quasiparticle excitations are a peak in the thermopower and the absence of a
Drude peak in the optical conductivity. The results presented here are relevant
to a wide range of strongly correlated metals, including transition metal
oxides, strontium ruthenates, and organic metals.Comment: 19 pages, 9 eps figure
Incoherent Interplane Conductivity of kappa-(BEDT-TTF)2Cu[N(CN)2]Br
The interplane optical spectrum of the organic superconductor
kappa-(BEDT-TTF)2Cu[N(CN)2]Br was investigated in the frequency range from 40
to 40,000 cm-1. The optical conductivity was obtained by Kramers-Kronig
analysis of the reflectance. The absence of a Drude peak at low frequency is
consistent with incoherent conductivity but in apparent contradiction to the
metallic temperature dependence of the DC resistivity. We set an upper limit to
the interplane transfer integral of tb = 0.1 meV. A model of defect-assisted
interplane transport can account for this discrepancy. We also assign the
phonon lines in the conductivity to the asymmetric modes of the ET molecule.Comment: 7 pages with embedded figures, submitted to PR
âMedically unexplainedâ symptoms and symptom disorders in primary care: prognosis-based recognition and classification
Background: Many patients consult their GP because they experience bodily symptoms. In a substantial proportion of
cases, the clinical picture does not meet the existing diagnostic criteria for diseases or disorders. This may be because
symptoms are recent and evolving or because symptoms are persistent but, either by their character or the negative
results of clinical investigation cannot be attributed to disease: so-called âmedically unexplained symptomsâ (MUS).
MUS are inconsistently recognised, diagnosed and managed in primary care. The specialist classification systems
for MUS pose several problems in a primary care setting. The systems generally require great certainty about
presence or absence of physical disease, they tend to be mind-body dualistic, and they view symptoms from a
narrow specialty determined perspective. We need a new classification of MUS in primary care; a classification
that better supports clinical decision-making, creates clearer communication and provides scientific underpinning
of research to ensure effective interventions.
Discussion: We propose a classification of symptoms that places greater emphasis on prognostic factors.
Prognosis-based classification aims to categorise the patientâs risk of ongoing symptoms, complications, increased
healthcare use or disability because of the symptoms. Current evidence suggests several factors which may be
used: symptom characteristics such as: number, multi-system pattern, frequency, severity. Other factors are:
concurrent mental disorders, psychological features and demographic data. We discuss how these characteristics may
be used to classify symptoms into three groups: self-limiting symptoms, recurrent and persistent symptoms, and
symptom disorders. The middle group is especially relevant in primary care; as these patients generally have reduced
quality of life but often go unrecognised and are at risk of iatrogenic harm. The presented characteristics do not
contain immediately obvious cut-points, and the assessment of prognosis depends on a combination of several factors.
Conclusion: Three criteria (multiple symptoms, multiple systems, multiple times) may support the classification into
good, intermediate and poor prognosis when dealing with symptoms in primary care. The proposed new classification
specifically targets the patient population in primary care and may provide a rational framework for decision-making in
clinical practice and for epidemiologic and clinical research of symptoms
Autonomous Meridian Sensory Response: from Internet subculture to audiovisual therapy
ASMR (Autonomous Sensory Meridian Response) is the name given to a pleasant sensation that can be felt most commonly on the scalp and can be triggered by various gentle sounds (like whispers, crinkles or tapping), smooth and repetitive visual stimuli, personal attention (like the touch of a hairdresser or a masseur) or other events. ASMR is often associated with a general feeling of relaxation and peace. Whilst academic research on the sociological, artistic, sensory and cognitive dimensions is still in its infancy ASMR has grown into a worldwide, cross-disciplinary, inter-cultural, multi-lingual social media sensation. This paper outlines the rise of ASMR as Internet subculture from its inception as âwhispering communityâ on Internet platforms and blogs, to become a truly popular (i.e. made by the people) platform for creative expression, self-made holistic therapy and in some instances true artistic audiovisual endeavours. This paper comments on the reasons behind the rise of the ASMR community as a fertile ground for creative expression. Audiencesâ expectations are dictated by the attention-induced nature of the sensory experience, a factor that spawned an exceptionally perceptive viewership if one considers the inherently fragmented essence of ubiquitous streaming media and the impatient scanning and skipping modes of reception it encourages. âASMRtistsâ thus enjoy a privileged relationship with audiences who are not impressed with the relentless pour of energy and information from social media platforms and treasure, instead, the slow, the quiet and the subtle. Examples from various ASMR content creators will be analysed from the compositional standpoint, highlighting technical and idiomatic similarities with forms of improvisatory practices and experimental artistic languages such as Musique ConcrĂšte. The paper will also illustrate recent audiovisual projects related to ASMR carried out at Keele University and will introduce the audience to planned developments towards ASMR related content delivered through mobile platforms
Anomalous Time-of-Flight Distributions Observed for Argon Implanted in Silicon and Resputtered by Ar
- âŠ