190 research outputs found
Effect of the wire width on the intrinsic detection efficiency of superconducting-nanowire single-photon detectors
Thorough spectral study of the intrinsic single-photon detection efficiency
in superconducting TaN and NbN nanowires with different widths shows that the
experimental cut-off in the efficiency at near-infrared wavelengths is most
likely caused by the local deficiency of Cooper pairs available for current
transport. For both materials the reciprocal cut-off wavelength scales with the
wire width whereas the scaling factor quantitatively agrees with the hot-spot
detection models. Comparison of the experimental data with vortex-assisted
detection scenarios shows that these models predict a stronger dependence of
the cut-off wavelength on the wire width.Comment: 16 pages, 6 figure
Identification of a novel Drosophila gene, beltless, using injectable embryonic and adult RNA interference (RNAi)
BACKGROUND: RNA interference (RNAi) is a process triggered by a double-stranded RNA that leads to targeted down-regulation/silencing of gene expression and can be used for functional genomics; i.e. loss-of-function studies. Here we report on the use of RNAi in the identification of a developmentally important novel Drosophila (fruit fly) gene (corresponding to a putative gene CG5652/GM06434), that we named beltless based on an embryonic loss-of-function phenotype. RESULTS: Beltless mRNA is expressed in all developmental stages except in 0–6 h embryos. In situ RT-PCR localized beltless mRNA in the ventral cord and brain of late stage embryos and in the nervous system, ovaries, and the accessory glands of adult flies. RNAi was induced by injection of short (22 bp) beltless double-stranded RNAs into embryos or into adult flies. Embryonic RNAi altered cuticular phenotypes ranging from partially-formed to missing denticle belts (thus beltless) of the abdominal segments A2–A4. Embryonic beltless RNAi was lethal. Adult RNAi resulted in the shrinkage of the ovaries by half and reduced the number of eggs laid. We also examined Df(1)RK4 flies in which deletion removes 16 genes, including beltless. In some embryos, we observed cuticular abnormalities similar to our findings with beltless RNAi. After differentiating Df(1)RK4 embryos into those with visible denticle belts and those missing denticle belts, we assayed the presence of beltless mRNA; no beltless mRNA was detectable in embryos with missing denticle belts. CONCLUSIONS: We have identified a developmentally important novel Drosophila gene, beltless, which has been characterized in loss-of-function studies using RNA interference. The putative beltless protein shares homologies with the C. elegans nose resistant to fluoxetine (NRF) NRF-6 gene, as well as with several uncharacterized C. elegans and Drosophila melanogaster genes, some with prominent acyltransferase domains. Future studies should elucidate the role and mechanism of action of beltless during Drosophila development and in adults, including in the adult nervous system
Studies of the Response of the Prototype CMS Hadron Calorimeter, Including Magnetic Field Effects, to Pion, Electron, and Muon Beams
We report on the response of a prototype CMS hadron calorimeter module to
charged particle beams of pions, muons, and electrons with momenta up to 375
GeV/c. The data were taken at the H2 and H4 beamlines at CERN in 1995 and 1996.
The prototype sampling calorimeter used copper absorber plates and scintillator
tiles with wavelength shifting fibers for readout. The effects of a magnetic
field of up to 3 Tesla on the response of the calorimeter to muons, electrons,
and pions are presented, and the effects of an upstream lead tungstate crystal
electromagnetic calorimeter on the linearity and energy resolution of the
combined calorimetric system to hadrons are evaluated. The results are compared
with Monte Carlo simulations and are used to optimize the choice of total
absorber depth, sampling frequency, and longitudinal readout segmentation.Comment: 89 pages, 41 figures, to be published in NIM, corresponding author: P
de Barbaro, [email protected]
Prime movers : mechanochemistry of mitotic kinesins
Mitotic spindles are self-organizing protein machines that harness teams of multiple force generators to drive chromosome segregation. Kinesins are key members of these force-generating teams. Different kinesins walk directionally along dynamic microtubules, anchor, crosslink, align and sort microtubules into polarized bundles, and influence microtubule dynamics by interacting with microtubule tips. The mechanochemical mechanisms of these kinesins are specialized to enable each type to make a specific contribution to spindle self-organization and chromosome segregation
Charge separation relative to the reaction plane in Pb-Pb collisions at TeV
Measurements of charge dependent azimuthal correlations with the ALICE
detector at the LHC are reported for Pb-Pb collisions at TeV. Two- and three-particle charge-dependent azimuthal correlations in
the pseudo-rapidity range are presented as a function of the
collision centrality, particle separation in pseudo-rapidity, and transverse
momentum. A clear signal compatible with a charge-dependent separation relative
to the reaction plane is observed, which shows little or no collision energy
dependence when compared to measurements at RHIC energies. This provides a new
insight for understanding the nature of the charge dependent azimuthal
correlations observed at RHIC and LHC energies.Comment: 12 pages, 3 captioned figures, authors from page 2 to 6, published
version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/286
A note on comonotonicity and positivity of the control components of decoupled quadratic FBSDE
In this small note we are concerned with the solution of Forward-Backward
Stochastic Differential Equations (FBSDE) with drivers that grow quadratically
in the control component (quadratic growth FBSDE or qgFBSDE). The main theorem
is a comparison result that allows comparing componentwise the signs of the
control processes of two different qgFBSDE. As a byproduct one obtains
conditions that allow establishing the positivity of the control process.Comment: accepted for publicatio
Transverse sphericity of primary charged particles in minimum bias proton-proton collisions at , 2.76 and 7 TeV
Measurements of the sphericity of primary charged particles in minimum bias
proton--proton collisions at , 2.76 and 7 TeV with the ALICE
detector at the LHC are presented. The observable is linearized to be collinear
safe and is measured in the plane perpendicular to the beam direction using
primary charged tracks with GeV/c in . The
mean sphericity as a function of the charged particle multiplicity at
mid-rapidity () is reported for events with different
scales ("soft" and "hard") defined by the transverse momentum of the leading
particle. In addition, the mean charged particle transverse momentum versus
multiplicity is presented for the different event classes, and the sphericity
distributions in bins of multiplicity are presented. The data are compared with
calculations of standard Monte Carlo event generators. The transverse
sphericity is found to grow with multiplicity at all collision energies, with a
steeper rise at low , whereas the event generators show the
opposite tendency. The combined study of the sphericity and the mean with multiplicity indicates that most of the tested event generators
produce events with higher multiplicity by generating more back-to-back jets
resulting in decreased sphericity (and isotropy). The PYTHIA6 generator with
tune PERUGIA-2011 exhibits a noticeable improvement in describing the data,
compared to the other tested generators.Comment: 21 pages, 9 captioned figures, 3 tables, authors from page 16,
published version, figures from
http://aliceinfo.cern.ch/ArtSubmission/node/308
- …