4 research outputs found

    Allele-specific targeting of mutant ataxin-3 by antisense oligonucleotides in SCA3-iPSC-derived neurons

    No full text
    Spinocerebellar ataxia type 3 (SCA3) is caused by an expanded polyglutamine stretch in ataxin-3. While wild-type ataxin-3 has important functions, e.g., as a deubiquitinase, downregulation of mutant ataxin-3 is likely to slow down the course of this fatal disease. We established a screening platform with human neurons of patients and controls derived from induced pluripotent stem cells to test antisense oligonucleotides (ASOs) for their effects on ataxin-3 expression. We identified an ASO that suppressed mutant and wild-type ataxin-3 levels by >90% after a singular treatment. Next, we screened pairs of ASOs designed to selectively target the mutant or the wild-type allele by taking advantage of a SNP (c.987G > C) in ATXN3 that is present in most SCA3 patients. We found ASOmut4 to reduce levels of mutant ataxin-3 by 80% after 10 days while leaving expression of wild-type ataxin-3 largely unaffected. In a long-term study we proved this effect to last for about 4 weeks after a single treatment without signs of neurotoxicity. This study provides proof of principle that allele-specific lowering of poly(Q)-expanded ataxin-3 by selective ASOs is feasible and long lasting, with sparing of wild-type ataxin-3 expression in a human cell culture model that is genetically identical to SCA3 patients

    Toxicity of ionizing radiation (IR) in a human induced pluripotent stem cell (hiPSC)-derived 3D early neurodevelopmental model

    No full text
    Prenatal brain development is a complex and sensitive process, highly susceptible to environmental influences such as pollutants, stress, malnutrition, drugs, tobacco exposure, or ionizing radiation (IR). Disturbances in development may cause life-long disabilities and diseases, such as ADHD, childhood cancers, cognitive problems, depression, anxiety and more severe developmental disabilities. Due to increasing medical imaging, radiation therapy, natural terrestrial radiation, radioactive pollution and long-distance flights, humans are increasingly exposed to IR. However, data on impact of IR on very early human brain development are scarce, particularly in the very first weeks of gestation. Here we investigated the effects of low-dose X-ray IR (1 Gy) in a 3D early brain developmental model derived from human pluripotent stem cells. In this model very early neural stem cells, neuroectodermal progenitor cells (NEP), were exposed to low-dose IR and direct as well as delayed effects were investigated. Expression of 20 different marker genes crucial for normal neural development was determined 48 h and 9 days post IR (pIR). All but one of the analyzed marker genes were reduced 48 h after IR, and all but seven genes normalized their expression by day 9 pIR. Among the seven markers were genes involved in neurodevelopmental and growth abnormalities. Moreover, we could show that stemness of the NEP was reduced after IR. We were thus able to identify a significant impact of radiation in cells surviving low-dose IR, suggesting that low-dose IR could have a negative impact on the early developing human brain, with potential later detrimental effects.publishe

    Generation of a heterozygous and a homozygous CSF1R knockout line from iPSC using CRISPR/Cas9

    No full text
    Mutations in Colony-stimulating factor 1 receptor (CSF1R) lead to CSF1R-related leukoencephalopathy, also known as Adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP), a rapidly progressing neurodegenerative disease with severe cognitive and motor impairment. In this study, a homozygous and a heterozygous CSF1R knockout induced pluripotent stem cell (iPSC) line were generated by CRISPR/Cas9-based gene editing. These in vitro models will provide a helpful tool for investigating the still largely unknown pathophysiology of CSF1R-related leukoencephalopathy
    corecore