1,995 research outputs found
Master equation approach to DNA-breathing in heteropolymer DNA
After crossing an initial barrier to break the first base-pair (bp) in
double-stranded DNA, the disruption of further bps is characterized by free
energies between less than one to a few kT. This causes the opening of
intermittent single-stranded bubbles. Their unzipping and zipping dynamics can
be monitored by single molecule fluorescence or NMR methods. We here establish
a dynamic description of this DNA-breathing in a heteropolymer DNA in terms of
a master equation that governs the time evolution of the joint probability
distribution for the bubble size and position along the sequence. The transfer
coefficients are based on the Poland-Scheraga free energy model. We derive the
autocorrelation function for the bubble dynamics and the associated relaxation
time spectrum. In particular, we show how one can obtain the probability
densities of individual bubble lifetimes and of the waiting times between
successive bubble events from the master equation. A comparison to results of a
stochastic Gillespie simulation shows excellent agreement.Comment: 12 pages, 8 figure
Dynamical scaling of the DNA unzipping transition
We report studies of the equilibrium and the dynamics of a general set of
lattice models which capture the essence of the force-induced or mechanical DNA
unzipping transition. Besides yielding the whole equilibrium phase diagram in
the force vs temperature plane, which reveals the presence of an interesting
re-entrant unzipping transition for low T, these models enable us to
characterize the dynamics of the process starting from a non-equilibrium
initial condition. The thermal melting of the DNA strands displays a model
dependent time evolution. On the contrary, our results suggest that the
dynamical mechanism for the unzipping by force is very robust and the scaling
behaviour does not depend on the details of the description we adopt.Comment: 6 pages, 4 figures, A shorter version of this paper appeared in Phys.
Rev. Lett. 88, 028102 (2002
Denaturation transition of stretched DNA
We generalize the Poland-Scheraga model to consider DNA denaturation in the
presence of an external stretching force. We demonstrate the existence of a
force-induced DNA denaturation transition and obtain the temperature-force
phase diagram. The transition is determined by the loop exponent for which
we find the new value such that the transition is second order
with in . We show that a finite stretching force
destabilizes DNA, corresponding to a lower melting temperature , in
agreement with single-molecule DNA stretching experiments.Comment: 5 pages, 3 figure
Bubble coalescence in breathing DNA: Two vicious walkers in opposite potentials
We investigate the coalescence of two DNA-bubbles initially located at weak
segments and separated by a more stable barrier region in a designed construct
of double-stranded DNA. The characteristic time for bubble coalescence and the
corresponding distribution are derived, as well as the distribution of
coalescence positions along the barrier. Below the melting temperature, we find
a Kramers-type barrier crossing behaviour, while at high temperatures, the
bubble corners perform drift-diffusion towards coalescence. The results are
obtained by mapping the bubble dynamics on the problem of two vicious walkers
in opposite potentials.Comment: 7 pages, 4 figure
Polymer reptation and nucleosome repositioning
We consider how beads can diffuse along a chain that wraps them, without
becoming displaced from the chain; our proposed mechanism is analogous to the
reptation of "stored length" in more familiar situations of polymer dynamics.
The problem arises in the case of globular aggregates of proteins (histones)
that are wound by DNA in the chromosomes of plants and animals; these beads
(nucleosomes) are multiply wrapped and yet are able to reposition themselves
over long distances, while remaining bound by the DNA chain.Comment: 9 pages, including 2 figures, to be published in Phys. Rev. Let
Bubble merging in breathing DNA as a vicious walker problem in opposite potentials
We investigate the coalescence of two DNA-bubbles initially located at weak
domains and separated by a more stable barrier region in a designed construct
of double-stranded DNA. In a continuum Fokker-Planck approach, the
characteristic time for bubble coalescence and the corresponding distribution
are derived, as well as the distribution of coalescence positions along the
barrier. Below the melting temperature, we find a Kramers-type barrier crossing
behavior, while at high temperatures, the bubble corners perform
drift-diffusion towards coalescence. In the calculations, we map the bubble
dynamics on the problem of two vicious walkers in opposite potentials. We also
present a discrete master equation approach to the bubble coalescence problem.
Numerical evaluation and stochastic simulation of the master equation show
excellent agreement with the results from the continuum approach. Given that
the coalesced state is thermodynamically stabilized against a state where only
one or a few base pairs of the barrier region are re-established, it appears
likely that this type of setup could be useful for the quantitative
investigation of thermodynamic DNA stability data as well as the rate constants
involved in the unzipping and zipping dynamics of DNA, in single molecule
fluorescence experiments.Comment: 24 pages, 11 figures; substantially extended version of
cond-mat/0610752; v2: minor text changes, virtually identical to the
published versio
RSC, an Essential, Abundant Chromatin-Remodeling Complex
AbstractA novel 15-subunit complex with the capacity to remodel the structure of chromatin, termed RSC, has been isolated from S. cerevisiae on the basis of homology to the SWI/SNF complex. At least three RSC subunits are related to SWI/SNF polypeptides: Sth1p, Rsc6p, and Rsc8p are significantly similar to Swi2/Snf2p, Swp73p, and Swi3p, respectively, and were identified by mass spectrometric and sequence analysis of peptide fragments. Like SWI/SNF, RSC exhibits a DNA-dependent ATPase activity stimulated by both free and nucleosomal DNA and a capacity to perturb nucleosome structure. RSC is, however, at least 10-fold more abundant than SWI/SNF complex and is essential for mitotic growth. Contrary to a report for SWI/SNF complex, no association of RSC (nor of SWI/SNF complex) with RNA polymerase II holoenzyme was detected
Tissue factor in antiphospholipid antibody-induced pregnancy loss:a pro-inflammatory molecule
Fetal loss in patients with antiphospholipid antibodies (aPL) has been ascribed to thrombosis of placental vessels. However, we have shown that inflammation, specifically complement activation with generation of the anaphylotoxin C5a, is an essential mediator of fetal injury. We have analysed the role of tissue factor (TF) in a mouse model of aPL-induced pregnancy loss. TF is the major cellular activator of the coagulation cascade but also has cell signaling activity. Mice that received aPL-IgG showed strong TF staining throughout the decidua and on embryonic debris. This TF staining was not associated with either fibrin staining or thrombi in deciduas. The absence of fibrin deposition and thrombi suggests that TF-dependent activation of coagulation does not mediate aPL-induced pregnancy loss. We found that either blockade of TF with a monoclonal antibody in wild type mice or a genetic reduction of TF prevented aPL-induced inflammation and pregnancy loss indicated a pathogenic role for TF in aPL-induced pregnancy complications. In response to aPL-generated C5a, neutrophils express TF potentiating inflammation in the deciduas and leading to miscarriages. Importantly, we showed that TF in myeloid cells, but not fetal-derived cells (trophoblasts), was associated with fetal injury, suggesting that the site for pathologic TF expression is neutrophils. We found that TF expression in neutrophils contributes to respiratory burst and subsequent trophoblast injury and pregnancy loss induced by aPL. The identification of TF, acting as an important pro-inflammatory mediator in aPL-induced fetal injury, provides a new target for therapy to prevent pregnancy loss in the aPL syndrome
The medical student
The Medical Student was published from 1888-1921 by the students of Boston University School of Medicine
Cross Priming Amplification: Mechanism and Optimization for Isothermal DNA Amplification
CPA is a class of isothermal amplification reactions that is carried out by a strand displacement DNA polymerase and does not require an initial denaturation step or the addition of a nicking enzyme. At the assay temperature of 63°C, the formation of a primer-template hybrid at transient, spontaneous denaturation bubbles in the DNA template is favored over re-annealing of the template strands by the high concentration of primer relative to template DNA. Strand displacement is encouraged by the annealing of cross primers with 5′ ends that are not complementary to the template strand and the binding of a displacement primer upstream of the crossing primer. The resulting exponential amplification of target DNA is highly specific and highly sensitive, producing amplicons from as few as four bacterial cells. Here we report on the basic CPA mechanism – single crossing CPA – and provide details on alternative mechanisms
- …