22 research outputs found
Active Tectonics Around Almaty and along the Zailisky Alatau Rangefront
This is the author accepted manuscript. The final version is available from Wiley via http://onlinelibrary.wiley.com/doi/10.1002/2017TC004657/abstractThe Zailisky Alatau is a >250-km-long mountain range in Southern Kazakhstan. Its northern rangefront around the major city of Almaty has more than 4 km topographic relief, yet in contrast to other large mountain fronts in the Tien Shan, little is known about its Late Quaternary tectonic activity despite several destructive earthquakes in the historical record. We analyse the tectonic geomorphology of the rangefront fault using field observations, differential GPS measurements of fault scarps, historical and recent satellite imagery, metre-scale topography derived from stereo satellite images, and decimetre-scale elevation models from UAV surveys. Fault scarps ranging in height from ~2 m to >20 m in alluvial fans indicate surface rupturing earthquakes occurred along the rangefront fault since the Last Glacial Maximum (LGM). Minimum estimated magnitudes for those earthquakes are M6.8- 7. Radiocarbon dating results from charcoal layers in uplifted river terraces indicate a Holocene slip rate of ~1.2-2.2 mm/a. We find additional evidence for active tectonic deformation all along the Almaty rangefront, basinward in the Kazakh platform, and in the interior of the Zailisky mountain range. Our data indicate the seismic hazard faced by Almaty comes from a variety of sources, and we emphasize the problems related to urban growth into the loess-covered foothills and secondary earthquake effects. With our structural and geochronologic framework we present a schematic evolution of the Almaty rangefront that may be applicable to similar settings of tectonic shortening in the mountain ranges of Central Asia
Assessing the activity of faults in continental interiors: Palaeoseismic insights from SE Kazakhstan
The presence of fault scarps is a first-order criterion for identifying active faults. Yet the preservation of these features depends on the recurrence interval between surface rupturing events, combined with the rates of erosional and depositional processes that act on the landscape. Within arid continental interiors single earthquake scarps can be preserved for thousands of years, and yet the interval between surface ruptures on faults in these regions may be much longer, such that the lack of evidence for surface faulting in the morphology may not preclude activity on those faults. In this study we investigate the 50 km-long ‘Toraigyr’ thrust fault in the northern Tien Shan. From palaeoseismological trenching we show that two surface rupturing earthquakes occurred in the last BP, but only the most recent event (3.15–3.6 ka BP) has a clear morphological expression. We conclude that a landscape reset took place in between the two events, likely as a consequence of the climatic change at the end of the last glacial maximum. These findings illustrate that in the Tien Shan evidence for the most recent active faulting can be easily obliterated by climatic processes due to the long earthquake recurrence intervals. Our results illustrate the problems related to the assessment of active tectonic deformation and seismic hazard assessments in continental interior settings.This study was financed by NERC and ESRC (Earthquakes without Frontiers project, Grant code: EwF_NE/J02001X/1_1), and the Centre for Observation and Modelling of Earthquakes and Tectonics (COMET). KOMPSAT-2 imagery was obtained through a category-1 award to RTW. EJC thanks St. Edmund Hall for travel support. RTW was supported during this research by a University Research Fellowship from the Royal Society of London
Archaeoseismology: Methodological issues and procedure
Archaeoseismic research contributes important data on past earthquakes. A limitation of the usefulness of archaeoseismology is due to the lack of continuous discussion about the methodology. The methodological issues are particularly important because archaeoseismological investigations of past earthquakes make use of a large variety of methods. Typical in situ investigations include: (1) reconstruction of the local archaeological stratigraphy aimed at defining the correct position and chronology of a destruction layer, presumably related to an earthquake; (2) analysis of the deformations potentially due to seismic shaking or secondary earthquake effects, detectable on walls; (3) analysis of the depositional characteristics of the collapsed material; (4) investigations of the local geology and geomorphology to define possible natural cause(s) of the destruction; (5) investigations of the local factors affecting the ground motion amplifications; and (6) estimation of the dynamic excitation, which affected the site under investigation. Subsequently, a 'territorial' approach testing evidence of synchronous destruction in a certain region may delineate the extent of the area struck by the earthquake. The most reliable results of an archaeoseismological investigation are obtained by application of modern geoarchaeological practice (archaeological stratigraphy plus geological–geomorphological data), with the addition of a geophysical-engineering quantitative approach and (if available) historical information. This gives a basic dataset necessary to perform quantitative analyses which, in turn, corroborate the archaeoseismic hypothesis. Since archaeoseismological investigations can reveal the possible natural causes of destruction at a site, they contribute to the wider field of environmental archaeology, that seeks to define the history of the relationship between humans and the environment. Finally, through the improvement of the knowledge on the past seismicity, these studies can contribute to the regional estimation of seismic hazard
Tien Shan geohazards database: Earthquakes and landslides
In this paper we present new and review already existing landslide and earthquake data for a large part of the Tien Shan, Central Asia. For the same area, only partial databases for sub-regions have been presented previously. They were compiled and new data were added to fill the gaps between the databases. Major new inputs are products of the Central Asia Seismic Risk Initiative (CASRI): a tentative digital map of active faults (even with indication of characteristic or possible maximum magnitude) and the earthquake catalogue of Central Asia until 2009
that was now updated with USGS data (to May 2014). The new compiled landslide inventory contains existing records of 1600 previously mapped mass movements and more than 1800 new landslide data. Considering presently available seismo-tectonic and landslide data, a target region of 1200 km (E–W) by 600 km (N–S) was defined for the production of more or less continuous geohazards information. This target region includes the entire Kyrgyz Tien Shan, the South-Western Tien Shan in Tajikistan, the Fergana Basin (Kyrgyzstan, Tajikistan and Uzbekistan) as well as the Western part in Uzbekistan, the North-Easternmost part in Kazakhstan and a small part of the Eastern Chinese Tien Shan (for the zones outside Kyrgyzstan and Tajikistan, only limited information was available and compiled)..