452 research outputs found

    Revisiting the 'LSND anomaly' II: critique of the data analysis

    Full text link
    This paper, together with a preceding paper, questions the so-called 'LSND anomaly': a 3.8 sigma excess of antielectronneutrino interactions over standard backgrounds, observed by the LSND Collaboration in a beam dump experiment with 800 MeV protons. That excess has been interpreted as evidence for the antimuonneutrino to antielectronneutrino oscillation in the \Deltam2 range from 0.2 eV2 to 2 eV2. Such a \Deltam2 range is incompatible with the widely accepted model of oscillations between three light neutrino species and would require the existence of at least one light 'sterile' neutrino. In a preceding paper, it was concluded that the estimates of standard backgrounds must be significantly increased. In this paper, the LSND Collaboration's estimate of the number of antielectronneutrino interactions followed by neutron capture, and of its error, is questioned. The overall conclusion is that the significance of the 'LSND anomaly' is not larger than 2.3 sigma.Comment: 30 pages, 16 figures, 6 table

    Reply to 'Corrections to the HARP-CDP Analysis of the LSND Neutrino Oscillation Backgrounds'

    Full text link
    The alleged mistakes in recent papers that reanalyze the backgrounds to the 'LSND anomaly' do not exist. We maintain our conclusion that the significance of the 'LSND anomaly' is not 3.8 sigma but not larger than 2.3 sigma.Comment: 3 page

    Why the paper CERN-PH-EP-2009-015 (arXiv:0903.4762) is scientifically unacceptable

    Full text link
    The paper CERN-PH-EP-2009-015 (arXiv:0903.4762) by A. Bagulya et al. violates standards of quality of work and scientific ethics on several counts. The paper contains assertions that contradict established detector physics. The paper falls short of proving the correctness of the authors' concepts and results. The paper ignores or quotes misleadingly pertinent published work. The paper ignores the fact that the authors' concepts and results have already been shown wrong in the published literature. The authors seem unaware that cross-section results from the 'HARP Collaboration' that are based on the paper's concepts and algorithms are in gross disagreement with the results of a second analysis of the same data, and with the results of other experiments.Comment: 8 pages, 3 figure

    Cross-sections of large-angle hadron production in proton- and pion-nucleus interactions VII: tin nuclei and beam momenta from \pm3 GeV/c to \pm15 GeV/c

    Get PDF
    We report on double-differential inclusive cross-sections of the production of secondary protons, charged pions, and deuterons, in the interactions with a 5% nuclear interaction length thick stationary tin target, of proton and pion beams with momentum from \pm3 GeV/c to \pm15 GeV/c. Results are given for secondary particles with production angles between 20 and 125 degrees. Cross-sections on tin nuclei are compared with cross-sections on beryllium, carbon, copper, tantalum and lead nuclei.Comment: 68 pages, 13 figure

    Comparison of Geant4 hadron generation with data from the interactions with beryllium nuclei of +8.9 GeV/c protons and pions, and of -8 GeV/c pions

    Get PDF
    Hadron generation in the Geant4 simulation tool kit is compared with inclusive spectra of secondary protons and pions from the interactions with beryllium nuclei of +8.9 GeV/c protons and pions, and of -8.0 GeV/c pions. The data were taken in 2002 at the CERN Proton Synchrotron with the HARP spectrometer. We report on significant disagreements between data and simulated data especially in the polar-angle distributions of secondary protons and pions.Comment: 15 pages, 13 figure

    Cross-Sections of Large-Angle Hadron Production in Proton- and Pion-Nucleus Interactions V: Lead Nuclei and Beam Momenta from +/-3 Gev/c to +/-15 Gev/c

    Get PDF
    We report on double-differential inclusive cross-sections of the production of secondary protons, charged pions, and deuterons, in the interactions with a 5% nuclear interaction length thick stationary lead target, of proton and pion beams with momentum from +/-3 GeV/c to +/-15 GeV/c. Results are given for secondary particles with production angles 20 to 125 degrees. Cross-sections on lead nuclei are compared with cross-sections on beryllium, copper, and tantalum nuclei.Comment: 67 pages, 13 figures, 47 table

    Pad equalization and dE/dx in the HARP TPC

    Get PDF
    In the HARP TPC, the specific ionization dE/dx depends critically on the pad equalization, which in turn depends on the crosstalk correction. We discuss the TPC pad equalization algorithm and its performance in terms of average and resolution of dE/dx of negative pions with an average active track length of 300 mm. The observed dE/dx of pions and protons agrees satisfactorily with the theoretical expectation, the resolution for a minimum-ionizing track length of 300 mm is 16%

    TPC track distortions III: fiat lux

    Get PDF
    We present a comprehensive overview and final summary of all four types of static track distortions seen in the HARP TPC, in terms of physical origins, mathematical modelling, and correction algorithms. 'Static'Â distortions are defined as not depending on the event time within the 400 ms long accelerator spill. Calculated static distortions are compared with measurements from cosmic-muon tracks. We characterize track distortions by the r phi residuals of cluster positions with respect to the transverse projection of a helical trajectory constrained by hits in the RPC overlap regions. This method provides a fixed TPC-external reference system (by contrast to the co-moving coordinate system associated with a fit) which solely permits to identify individually, and measure quantitatively, the static TPC track distortions arising from (i) the inhomogeneity of the solenoidal magnetic field, (ii) the inhomogeneity of the electric field from the high-voltage mismatch between the inner and outer TPC field cages, (iii) the anode-wire durchgriff, and (iv) a homogenous ion-charge density in the drift volume. Five voltage levels are identified which were set incorrectly during data taking with the HARP TPC, and unfortunately conspired toward large static and dynamic track distortions. The observed time development of static distortions after a 83mKr calibration lends decisive support to our conclusions on static TPC distortions

    Cross-Sections of Large-Angle Hadron Production in Proton- and Pion-Nucleus Interactions III: Tantalum Nuclei and Beam Momenta from +/-3 Gev/c to +/-15 Gev/c

    Get PDF
    We report on double-differential inclusive cross-sections of the production of secondary protons, charged pions, and deuterons, in the interactions with a 5% nuclear interaction length thick stationary tantalum target, of proton and pion beams with momentum from +/-3 GeV/c to +/-15 GeV/c. Results are given for secondary particles with production angles between 20 and 125 degrees. They are of particular relevance for the optimization of the design parameters of the proton driver of a neutrino factory.Comment: 68 pages, 12 figures, corrections in v2: added 'HARP -CDP group' to author name, corrected two typos in Table 4 (last two p values for 65-90 degrees were all 0.972

    Fraction of muons in the T9 pion beams

    Get PDF
    In the T9 beam line, the beam instrumentation does not permit the separation of pions from muons. For a correct pion interaction cross-section, the flux of beam muons must be subtracted from the flux of pion-like particles incident on the target. In this memo, data from the beam instrumentation and the beam-muon identifier in 'empty-target' runs are analyzed in order to measure the fraction of beam muons incident on the target, in the pion beams from 3 to 15 GeV/c
    corecore