7 research outputs found
Extensive intron gain in the ancestor of placental mammals
<p>Abstract</p> <p>Background</p> <p>Genome-wide studies of intron dynamics in mammalian orthologous genes have found convincing evidence for loss of introns but very little for intron turnover. Similarly, large-scale analysis of intron dynamics in a few vertebrate genomes has identified only intron losses and no gains, indicating that intron gain is an extremely rare event in vertebrate evolution. These studies suggest that the intron-rich genomes of vertebrates do not allow intron gain. The aim of this study was to search for evidence of <it>de novo </it>intron gain in domesticated genes from an analysis of their exon/intron structures.</p> <p>Results</p> <p>A phylogenomic approach has been used to analyse all domesticated genes in mammals and chordates that originated from the coding parts of transposable elements. Gain of introns in domesticated genes has been reconstructed on well established mammalian, vertebrate and chordate phylogenies, and examined as to where and when the gain events occurred. The locations, sizes and amounts of <it>de novo </it>introns gained in the domesticated genes during the evolution of mammals and chordates has been analyzed. A significant amount of intron gain was found only in domesticated genes of placental mammals, where more than 70 cases were identified. <it>De novo </it>gained introns show clear positional bias, since they are distributed mainly in 5' UTR and coding regions, while 3' UTR introns are very rare. In the coding regions of some domesticated genes up to 8 <it>de novo </it>gained introns have been found. Intron densities in Eutheria-specific domesticated genes and in older domesticated genes that originated early in vertebrates are lower than those for normal mammalian and vertebrate genes. Surprisingly, the majority of intron gains have occurred in the ancestor of placentals.</p> <p>Conclusions</p> <p>This study provides the first evidence for numerous intron gains in the ancestor of placental mammals and demonstrates that adequate taxon sampling is crucial for reconstructing intron evolution. The findings of this comprehensive study slightly challenge the current view on the evolutionary stasis in intron dynamics during the last 100 - 200 My. Domesticated genes could constitute an excellent system on which to analyse the mechanisms of intron gain in placental mammals.</p> <p><b>Reviewers: </b>this article was reviewed by Dan Graur, Eugene V. Koonin and Jürgen Brosius.</p
Phylogenomic analysis of the cystatin superfamily in eukaryotes and prokaryotes
<p>Abstract</p> <p>Background</p> <p>The cystatin superfamily comprises cysteine protease inhibitors that play key regulatory roles in protein degradation processes. Although they have been the subject of many studies, little is known about their genesis, evolution and functional diversification. Our aim has been to obtain a comprehensive insight into their origin, distribution, diversity, evolution and classification in Eukaryota, Bacteria and Archaea.</p> <p>Results</p> <p>We have identified <it>in silico </it>the full complement of the cystatin superfamily in more than 2100 prokaryotic and eukaryotic genomes. The analysis of numerous eukaryotic genomes has provided strong evidence for the emergence of this superfamily in the ancestor of eukaryotes. The progenitor of this superfamily was most probably intracellular and lacked a signal peptide and disulfide bridges, much like the extant Giardia cystatin. A primordial gene duplication produced two ancestral eukaryotic lineages, cystatins and stefins. While stefins remain encoded by a single or a small number of genes throughout the eukaryotes, the cystatins have undergone a more complex and dynamic evolution through numerous gene and domain duplications. In the cystatin superfamily we discovered twenty vertebrate-specific and three angiosperm-specific orthologous families, indicating that functional diversification has occurred only in multicellular eukaryotes. In vertebrate orthologous families, the prevailing trends were loss of the ancestral inhibitory activity and acquisition of novel functions in innate immunity. Bacterial cystatins and stefins may be emergency inhibitors that enable survival of bacteria in the host, defending them from the host's proteolytic activity.</p> <p>Conclusion</p> <p>This study challenges the current view on the classification, origin and evolution of the cystatin superfamily and provides valuable insights into their functional diversification. The findings of this comprehensive study provide guides for future structural and evolutionary studies of the cystatin superfamily as well as of other protease inhibitors and proteases.</p
What Can Domesticated Genes Tell Us about the Intron Gain in Mammals?
Domesticated genes, originating from retroelements or from DNA-transposons, constitute an ideal system for testing the hypothesis on the absence of intron gain in mammals. Since single-copy domesticated genes originated from the intronless multicopy transposable elements, the ancestral intron state for domesticated genes is zero. A phylogenomic approach has been used to analyse all domesticated genes in mammals and chordates that originated from the coding parts of transposable elements. A significant amount of intron gain was found only in domesticated genes of placental mammals, where more than 70 cases were identified. De novo gained introns show clear positional bias, since they are distributed mainly in 5′ UTR and coding regions, while 3′ UTR introns are very rare. In the coding regions of some domesticated genes up to 8 de novo gained introns have been found. Surprisingly, the majority of intron gains have occurred in the ancestor of placental mammals. Domesticated genes could constitute an excellent system on which to analyse the mechanisms of intron gain. This paper summarizes the current understanding of intron gain in mammals
Evolutionary history of alpha satellite DNA repeats dispersed within human genome euchromatin
Major human alpha satellite DNA repeats are preferentially assembled within (peri)centromeric regions but are also dispersed within euchromatin in the form of clustered or short single repeat arrays. To study the evolutionary history of single euchromatic human alpha satellite repeats (ARs), we analyzed their orthologous loci across the primate genomes. The continuous insertion of euchromatic ARs throughout the evolutionary history of primates starting with the ancestors of Simiformes (45-60 Ma) and continuing up to the ancestors of Homo is revealed. Once inserted, the euchromatic ARs were stably transmitted to the descendant species, some exhibiting copy number variation, whereas their sequence divergence followed the species phylogeny. Many euchromatic ARs have sequence characteristics of (peri)centromeric alpha repeats suggesting heterochromatin as a source of dispersed euchromatic ARs. The majority of euchromatic ARs are inserted in the vicinity of other repetitive elements such as L1, Alu, and ERV or are embedded within them. Irrespective of the insertion context, each AR insertion seems to be unique and once inserted, ARs do not seem to be subsequently spread to new genomic locations. In spite of association with (retro)transposable elements, there is no indication that such elements play a role in ARs proliferation. The presence of short duplications at most of ARs insertion sites suggests site-directed recombination between homologous motifs in ARs and in the target genomic sequence, probably mediated by extrachromosomal circular DNA, as a mechanism of spreading within euchromatin