30 research outputs found

    Biochemical and medical importance of vanadium compounds

    No full text
    Vanadium belongs to the group of transition metals and is present in the air and soil contaminants in large urban agglomerations due to combustion of fossil fuels. It forms numerous inorganic compounds (vanadyl sulfate, sodium metavanadate, sodium orthovanadate, vanadium pentoxide) as well as complexes with organic compounds (BMOV, BEOV, METVAN). Depending on the research model, vanadium compounds exhibit antitumor or carcinogenic properties. Vanadium compounds generate ROS as a result of Fenton's reaction or of the reaction with atmospheric oxygen. They inactivate the Cdc25B2 phosphatase and lead to degradation of Cdc25C, which induces G2/M phase arrest. In cells, vanadium compounds activate numerous signaling pathways and transcription factors, including PI3K-PKB/Akt-mTOR, NF-κB, MEK1/2-ERK, that cause cell survival or increased expression and release of VEGF. Vanadium compounds inhibit p53-dependent apoptosis and promote entry into the S phase of cells containing functional p53 protein. In addition, vanadium compounds, in particular organic derivatives, have insulin-mimetic and antidiabetic properties. Vanadium compounds lower blood glucose levels in animals and in clinical trials. They also inhibit the activity of protein tyrosine phosphatase 1B. By activating the PI3K-PKB/Akt pathway, vanadium compaunds increase the cellular uptake of glucose by the GLUT4 transporter. The PKB/Akt pathway is also used to inactivate glycogen synthase kinase-3. The impact of vanadium compounds on inflammatory reactions has not been fully studied. Vanadium pentoxide causes expression of COX-2 and the release of proinflammatory cytokines in a human lung fibroblast model. Other vanadium compounds activate NF-κB in macrophages by activating IKKβ

    Vanadium Compounds as Pro-Inflammatory Agents: Effects on Cyclooxygenases

    No full text
    This paper discusses how the activity and expression of cyclooxygenases are influenced by vanadium compounds at anticancer concentrations and recorded in inorganic vanadium poisonings. We refer mainly to the effects of vanadate (orthovanadate), vanadyl and pervanadate ions; the main focus is placed on their impact on intracellular signaling. We describe the exact mechanism of the effect of vanadium compounds on protein tyrosine phosphatases (PTP), epidermal growth factor receptor (EGFR), PLCγ, Src, mitogen-activated protein kinase (MAPK) cascades, transcription factor NF-κB, the effect on the proteolysis of COX-2 and the activity of cPLA2. For a better understanding of these processes, a lot of space is devoted to the transformation of vanadium compounds within the cell and the molecular influence on the direct targets of the discussed vanadium compounds

    Cyclooxygenase pathways

    No full text
    This review compiles the current knowledge on the effects of prostanoids - arachidonic acid metabolites - on their own synthesis, activity and degradation. Interaction mechanisms between the receptors for the relevant compounds are presented, in particular with regard to the cooperation between a thromboxane A2 and prostaglandin I2 receptors. The questions of desensitization and internalization of receptors are discussed. The stages of the inflammatory response and tumor progression are analyzed against the background of the disruption of the synthesis of prostanoids. Special attention is given to the significance of 15-deoxy-Δ12,14-prostaglandin J2 in the regulation of the synthesis of prostanoids and its role as an anti-inflammatory agent. Ultimately, therapeutic approaches as used in various treatments are discussed in the light of the available knowledge

    Concentrations of Mg, Ca, Fe, Cu, Zn, P and anthropometric and biochemical parameters in adults with chronic heart failure

    No full text
    Background The study investigated the relationship between the concentrations of Mg, Ca, Fe, Cu, Zn, P and anthropometric and biochemical parameters in the blood serum of patients with heart failure (HF) and the potential influence on the development and progression of HF. Material & methods The study included 214 patients (155 men and 59 women), aged 40–87 years, presenting symptoms or signs typical of HF (according to the NYHA functional classification). Serum concentrations were determined for Mg, Ca, Fe, Cu, Zn, P, C-reactive protein (CRP), creatinine, urea, triglyceride levels (TG), total cholesterol (CH), high density protein (HDL), low density protein (LDL). The levels of macro-and microminerals were analysed using inductively coupled serum optical emission spectrometry (ICP-OES). Results Our study confirmed the role of known risk factors in the development of heart failure, including: overweight, diabetes, hypertension, high triglycerides (TG), high total cholesterol (CH), high levels of low density protein (LDL) and reduced levels of high density protein (HDL), high CRP, high creatinine. Moreover, deficient serum concentrations of Mg (47% of the studied men and 54% of the women) and Cu (in 44% of men and more than 30% of women) were observed, as well as subnormal serum Fe (2% of women) and Zn (1% of men). Elevated serum Ca was found in 50% of men and 49% of women. In 44% of the studied men and 52% of the studied women, P levels in serum were also above-average. The study revealed a significant positive correlation between serum levels of Ca and Mg, and also Ca and Cu in women. In men, serum Cu was positively correlated with Mg and Ca concentrations. In patients from group 1 (NYHA I–II), Mg content was positively correlated with Ca and Cu. In this patient group, Ca was also positively associated with Cu content in serum. In group 2 (NYHA III-IV), serum Mg concentration was significantly positively correlated with that of Cu and Ca. Conclusions Changes in the serum concentrations of macro-and microminerals may significantly affect the severity of HF in Polish patients

    Synthesis and Significance of Arachidonic Acid, a Substrate for Cyclooxygenases, Lipoxygenases, and Cytochrome P450 Pathways in the Tumorigenesis of Glioblastoma Multiforme, Including a Pan-Cancer Comparative Analysis

    No full text
    Glioblastoma multiforme (GBM) is one of the most aggressive gliomas. New and more effective therapeutic approaches are being sought based on studies of the various mechanisms of GBM tumorigenesis, including the synthesis and metabolism of arachidonic acid (ARA), an omega-6 polyunsaturated fatty acid (PUFA). PubMed, GEPIA, and the transcriptomics analysis carried out by Seifert et al. were used in writing this paper. In this paper, we discuss in detail the biosynthesis of this acid in GBM tumors, with a special focus on certain enzymes: fatty acid desaturase (FADS)1, FADS2, and elongation of long-chain fatty acids family member 5 (ELOVL5). We also discuss ARA metabolism, particularly its release from cell membrane phospholipids by phospholipase A2 (cPLA2, iPLA2, and sPLA2) and its processing by cyclooxygenases (COX-1 and COX-2), lipoxygenases (5-LOX, 12-LOX, 15-LOX-1, and 15-LOX-2), and cytochrome P450. Next, we discuss the significance of lipid mediators synthesized from ARA in GBM cancer processes, including prostaglandins (PGE2, PGD2, and 15-deoxy-Δ12,14-PGJ2 (15d-PGJ2)), thromboxane A2 (TxA2), oxo-eicosatetraenoic acids, leukotrienes (LTB4, LTC4, LTD4, and LTE4), lipoxins, and many others. These lipid mediators can increase the proliferation of GBM cancer cells, cause angiogenesis, inhibit the anti-tumor response of the immune system, and be responsible for resistance to treatment

    CXCL1: Gene, Promoter, Regulation of Expression, mRNA Stability, Regulation of Activity in the Intercellular Space

    No full text
    CXCL1 is one of the most important chemokines, part of a group of chemotactic cytokines involved in the development of many inflammatory diseases. It activates CXCR2 and, at high levels, CXCR1. The expression of CXCL1 is elevated in inflammatory reactions and also has important functions in physiology, including the induction of angiogenesis and recruitment of neutrophils. Due to a lack of reviews that precisely describe the regulation of CXCL1 expression and function, in this paper, we present the mechanisms of CXCL1 expression regulation with a special focus on cancer. We concentrate on the regulation of CXCL1 expression through the regulation of CXCL1 transcription and mRNA stability, including the involvement of NF-κB, p53, the effect of miRNAs and cytokines such as IFN-γ, IL-1β, IL-17, TGF-β and TNF-α. We also describe the mechanisms regulating CXCL1 activity in the extracellular space, including proteolytic processing, CXCL1 dimerization and the influence of the ACKR1/DARC receptor on CXCL1 localization. Finally, we explain the role of CXCL1 in cancer and possible therapeutic approaches directed against this chemokine

    Biosynthesis and Significance of Fatty Acids, Glycerophospholipids, and Triacylglycerol in the Processes of Glioblastoma Tumorigenesis

    No full text
    One area of glioblastoma research is the metabolism of tumor cells and detecting differences between tumor and healthy brain tissue metabolism. Here, we review differences in fatty acid metabolism, with a particular focus on the biosynthesis of saturated fatty acids (SFA), monounsaturated fatty acids (MUFA), and polyunsaturated fatty acids (PUFA) by fatty acid synthase (FASN), elongases, and desaturases. We also describe the significance of individual fatty acids in glioblastoma tumorigenesis, as well as the importance of glycerophospholipid and triacylglycerol synthesis in this process. Specifically, we show the significance and function of various isoforms of glycerol-3-phosphate acyltransferases (GPAT), 1-acylglycerol-3-phosphate O-acyltransferases (AGPAT), lipins, as well as enzymes involved in the synthesis of phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylserine (PS), phosphatidylinositol (PI), and cardiolipin (CL). This review also highlights the involvement of diacylglycerol O-acyltransferase (DGAT) in triacylglycerol biosynthesis. Due to significant gaps in knowledge, the GEPIA database was utilized to demonstrate the significance of individual enzymes in glioblastoma tumorigenesis. Finally, we also describe the significance of lipid droplets in glioblastoma and the impact of fatty acid synthesis, particularly docosahexaenoic acid (DHA), on cell membrane fluidity and signal transduction from the epidermal growth factor receptor (EGFR)

    Synthesis and Significance of Arachidonic Acid, a Substrate for Cyclooxygenases, Lipoxygenases, and Cytochrome P450 Pathways in the Tumorigenesis of Glioblastoma Multiforme, Including a Pan-Cancer Comparative Analysis

    No full text
    Glioblastoma multiforme (GBM) is one of the most aggressive gliomas. New and more effective therapeutic approaches are being sought based on studies of the various mechanisms of GBM tumorigenesis, including the synthesis and metabolism of arachidonic acid (ARA), an omega-6 polyunsaturated fatty acid (PUFA). PubMed, GEPIA, and the transcriptomics analysis carried out by Seifert et al. were used in writing this paper. In this paper, we discuss in detail the biosynthesis of this acid in GBM tumors, with a special focus on certain enzymes: fatty acid desaturase (FADS)1, FADS2, and elongation of long-chain fatty acids family member 5 (ELOVL5). We also discuss ARA metabolism, particularly its release from cell membrane phospholipids by phospholipase A2 (cPLA2, iPLA2, and sPLA2) and its processing by cyclooxygenases (COX-1 and COX-2), lipoxygenases (5-LOX, 12-LOX, 15-LOX-1, and 15-LOX-2), and cytochrome P450. Next, we discuss the significance of lipid mediators synthesized from ARA in GBM cancer processes, including prostaglandins (PGE2, PGD2, and 15-deoxy-Δ12,14-PGJ2 (15d-PGJ2)), thromboxane A2 (TxA2), oxo-eicosatetraenoic acids, leukotrienes (LTB4, LTC4, LTD4, and LTE4), lipoxins, and many others. These lipid mediators can increase the proliferation of GBM cancer cells, cause angiogenesis, inhibit the anti-tumor response of the immune system, and be responsible for resistance to treatment

    CXCR2 Receptor: Regulation of Expression, Signal Transduction, and Involvement in Cancer

    No full text
    Chemokines are a group of about 50 chemotactic cytokines crucial for the migration of immune system cells and tumor cells, as well as for metastasis. One of the 20 chemokine receptors identified to date is CXCR2, a G-protein-coupled receptor (GPCR) whose most known ligands are CXCL8 (IL-8) and CXCL1 (GRO-α). In this article we present a comprehensive review of literature concerning the role of CXCR2 in cancer. We start with regulation of its expression at the transcriptional level and how this regulation involves microRNAs. We show the mechanism of CXCR2 signal transduction, in particular the action of heterotrimeric G proteins, phosphorylation, internalization, intracellular trafficking, sequestration, recycling, and degradation of CXCR2. We discuss in detail the mechanism of the effects of activated CXCR2 on the actin cytoskeleton. Finally, we describe the involvement of CXCR2 in cancer. We focused on the importance of CXCR2 in tumor processes such as proliferation, migration, and invasion of tumor cells as well as the effects of CXCR2 activation on angiogenesis, lymphangiogenesis, and cellular senescence. We also discuss the importance of CXCR2 in cell recruitment to the tumor niche including tumor-associated neutrophils (TAN), tumor-associated macrophages (TAM), myeloid-derived suppressor cells (MDSC), and regulatory T (Treg) cells
    corecore