7 research outputs found

    B-1a cells acquire their unique characteristics by bypassing the pre-BCR selection stage

    Get PDF
    B-1a cells are long-lived, self-renewing innate-like B cells that predominantly inhabit the peritoneal and pleural cavities. In contrast to conventional B-2 cells, B-1a cells have a receptor repertoire that is biased towards bacterial and self-antigens, promoting a rapid response to infection and clearing of apoptotic cells. Although B-1a cells are known to primarily originate from fetal tissues, the mechanisms by which they arise has been a topic of debate for many years. Here we show that in the fetal liver versus bone marrow environment, reduced IL-7R/STAT5 levels promote immunoglobulin kappa gene recombination at the early pro-B cell stage. As a result, differentiating B cells can directly generate a mature B cell receptor (BCR) and bypass the requirement for a pre-BCR and pairing with surrogate light chain. This 'alternate pathway' of development enables the production of B cells with self-reactive, skewed specificity receptors that are peculiar to the B-1a compartment. Together our findings connect seemingly opposing lineage and selection models of B-1a cell development and explain how these cells acquire their unique properties

    miRNAs are essential for the regulation of the PI3K/AKT/FOXO pathway and receptor editing during B cell maturation

    Get PDF
    B cell development is a tightly regulated process dependent on sequential rearrangements of immunoglobulin loci that encode the antigen receptor. To elucidate the role of microRNAs (miRNAs) in the orchestration of B cell development, we ablated all miRNAs at the earliest stage of B cell development by conditionally targeting the enzymes critical for RNAi in early B cell precursors. Absence of any one of these enzymes led to a block at the pro- to pre-B cell transition due to increased apoptosis and a failure of pre-B cells to proliferate. Expression of a Bcl2 transgene allowed for partial rescue of B cell development, however, the majority of the rescued B cells had low surface immunoglobulin expression with evidence of ongoing light chain editing. Our analysis revealed that miRNAs are critical for the regulation of the PTEN-AKT-FOXO1 pathway that in turn controls Rag expression during B cell development

    VH replacement in primary immunoglobulin repertoire diversification

    No full text
    The genes encoding the variable (V) region of the B-cell antigen receptor (BCR) are assembled from V, D (diversity), and J (joining) elements through a RAG-mediated recombination process that relies on the recognition of recombination signal sequences (RSSs) flanking the individual elements. Secondary V(D)J rearrangement modifies the original Ig rearrangement if a nonproductive original joint is formed, as a response to inappropriate signaling from a self-reactive BCR, or as part of a stochastic mechanism to further diversify the Ig repertoire. VH replacement represents a RAG-mediated secondary rearrangement in which an upstream VH element recombines with a rearranged VHDHJH joint to generate a new BCR specificity. The rearrangement occurs between the cryptic RSS of the original VH element and the conventional RSS of the invading VH gene, leaving behind a footprint of up to five base pairs (bps) of the original VH gene that is often further obscured by exonuclease activity and N-nucleotide addition. We have previously demonstrated that VH replacement can efficiently rescue the development of B cells that have acquired two nonproductive heavy chain (IgH) rearrangements. Here we describe a novel knock-in mouse model in which the prerearranged IgH locus resembles an endogenously rearranged productive VHDHJH allele. Using this mouse model, we characterized the role of VH replacement in the diversification of the primary Ig repertoire through the modification of productive VHDHJH rearrangements. Our results indicate that VH replacement occurs before Ig light chain rearrangement and thus is not involved in the editing of self-reactive antibodies

    Negative selection, not receptor editing, is a physiological response of autoreactive thymocytes

    Get PDF
    Antigen receptor editing—a process of secondary rearrangements of antigen receptor genes in autoreactive lymphocytes—is a well-established tolerance mechanism in B cells, whereas its role in T cells remains controversial. Here, we investigated this issue using a novel Tcra knock-in locus, which ensured appropriate timing of TCRα expression and allowed secondary rearrangements. Under these conditions the only response to self-antigen that could be unambiguously identified was negative selection of CD4/CD8 double positive thymocytes. No evidence could be obtained for antigen-induced TCR editing, whereas replacement of the transgenic TCRα chain by ongoing gene rearrangement occurred in some cells irrespective of the presence or absence of self-antigen

    Tissue-specific DNA demethylation is required for proper B-cell differentiation and function

    No full text
    There is ample evidence that somatic cell differentiation during development is accompanied by extensive DNA demethylation of specific sites that vary between cell types. Although the mechanism of this process has not yet been elucidated, it is likely to involve the conversion of 5mC to 5hmC by Tet enzymes. We show that a Tet2/Tet3 conditional knockout at early stages of B-cell development largely prevents lineage-specific programmed demethylation events. This lack of demethylation affects the expression of nearby B-cell lineage genes by impairing enhancer activity, thus causing defects in B-cell differentiation and function. Thus, tissue-specific DNA demethylation appears to be necessary for proper somatic cell development in vivo

    STAT3 activation in Th17 and Th22 cells controls IL-22-mediated epithelial host defense during infectious colitis

    No full text
    The Citrobacter rodentium model mimics the pathogenesis of infectious colitis and requires sequential contributions from different immune cell populations, including innate lymphoid cells (ILCs) and CD4+ lymphocytes. In this study, we addressed the role of STAT3 activation in CD4+ cells during host defense in mice against C. rodentium. In mice with defective STAT3 in CD4+ cells (Stat3DeltaCD4), the course of infection was unchanged during the innate lymphoid cell-dependent early phase, but significantly altered during the lymphocyte-dependent later phase. Stat3DeltaCD4 mice exhibited intestinal epithelial barrier defects, including downregulation of antimicrobial peptides, increased systemic distribution of bacteria, and prolonged reduction in the overall burden of C. rodentium infection. Immunomonitoring of lamina propria cells revealed loss of virtually all IL-22-producing CD4+ lymphocytes, suggesting that STAT3 activation was required for IL-22 production not only in Th17 cells, but also in Th22 cells. Notably, the defective host defense against C. rodentium in Stat3CD4 mice could be fully restored by specific overexpression of IL-22 through a minicircle vector-based technology. Moreover, expression of a constitutive active STAT3 in CD4+ cells shaped strong intestinal epithelial barrier function in vitro and in vivo through IL-22, and it promoted protection from enteropathogenic bacteria. Thus, our work indicates a critical role of STAT3 activation in Th17 and Th22 cells for control of the IL-22-mediated host defense, and strategies expanding STAT3-activated CD4+ lymphocytes may be considered as future therapeutic options for improving intestinal barrier function in infectious colitis
    corecore