7 research outputs found

    Development of Simulation Model for Transradial Catheterization Practice for Physicians

    Get PDF
    Objective: This study tested different types of silicone rubber material to assess the most durable with properties that best simulated the human skin and vascular. The optimal materials were used to produce a transradial catheterization simulation model to train medical practitioners and tested the improvement of the training with a medical simulation model. Materials and Methods: Three types of silicone rubber were tested for their suitability as artificial skin and vascular for transradial catheterization simulation model. Eighteen fellowship physicians assessed the simulator’s operational effectiveness and recorded their satisfaction with the training. Results: Silicone rubbers were tested for realism and capability for repetitive training. Silicone rubber RTV-01 was the most durable for simulating the artificial skin, while silicone rubber RTV-03 was the most durable for simulating the artificial vascular with statistically significant results recorded by Kaplan-Meier analysis (P < 0.1). Satisfaction assessment results of the 18 participants using a Likert scale (5 points) returned total average scores of model’s efficacies as 4.41 and total average scores of model’s usefulness as 4.59. Conclusion: The materials were used for transradial catheterization simulation to enhance fellowship trainees’ learning efficiency through practice. The fellowship trainees became familiar with the equipment, gained a higher completion rate, and increased confidence in treatment planning

    TCTAP C-213 I Trust What I See

    Full text link

    TCTAP C-015 The Last Straw

    Full text link

    Intravascular Imaging Guidance Reduce 1-Year MACE in Patients Undergoing Rotablator Atherectomy-Assisted Drug-Eluting Stent Implantation

    No full text
    Objectives: This study aimed to investigate the incidence of 1-year major adverse cardiac events (MACE) compared between intravascular imaging guidance and angiographic guidance in patients undergoing rotablator atherectomy (RA)-assisted percutaneous coronary intervention (PCI) with drug-eluting stent (DES) implantation.Methods: This retrospective analysis included 265 consecutive patients with heavy calcified lesion who underwent RA-assisted PCI with DES implantation at our institution during the January 2016-December 2018 study period. This study was approved by the Siriraj Institutional Review Board. Patients were divided into either the angiographic guidance PCI group or the imaging guidance PCI group, which was defined as intravascular ultrasound or optical coherence tomography. The primary endpoint was 1-year MACE.Results: Two hundred and sixty-five patients were enrolled, including 188 patients in the intravascular imaging guidance group, and 77 patients in the angiographic guidance group. One-year MACE was significantly lower in the imaging guidance group compared to the angiographic guidance group (4.3 vs. 28.9%, respectively; odds ratio (OR): 9.06, 95% CI: 3.82–21.52; p &amp;lt; 0.001). The 1-year rates of all-cause death (OR: 8.19, 95% CI: 2.15–31.18; p = 0.002), myocardial infarction (MI) (OR: 6.13, 95% CI: 2.05–18.3; p = 0.001), and target vessel revascularization (TVR) (OR: 3.67, 95% CI: 1.13–11.96; p = 0.031) were also significantly lower in the imaging guidance group compared with the angiographic guidance group. The rate of stroke was non-significantly different between groups.Conclusion: In patients with heavy calcified lesion undergoing RA-assisted DES implantation, the intravascular imaging guidance significantly reduced the incidence of 1-year MACE, all-cause death, MI, and TVR compared to the angiographic guidance.</jats:p
    corecore