8 research outputs found

    Nonholonomic Constraints with Fractional Derivatives

    Full text link
    We consider the fractional generalization of nonholonomic constraints defined by equations with fractional derivatives and provide some examples. The corresponding equations of motion are derived using variational principle.Comment: 18 page

    Fractional Variations for Dynamical Systems: Hamilton and Lagrange Approaches

    Full text link
    Fractional generalization of an exterior derivative for calculus of variations is defined. The Hamilton and Lagrange approaches are considered. Fractional Hamilton and Euler-Lagrange equations are derived. Fractional equations of motion are obtained by fractional variation of Lagrangian and Hamiltonian that have only integer derivatives.Comment: 21 pages, LaTe

    Psi-Series Solution of Fractional Ginzburg-Landau Equation

    Full text link
    One-dimensional Ginzburg-Landau equations with derivatives of noninteger order are considered. Using psi-series with fractional powers, the solution of the fractional Ginzburg-Landau (FGL) equation is derived. The leading-order behaviours of solutions about an arbitrary singularity, as well as their resonance structures, have been obtained. It was proved that fractional equations of order alphaalpha with polynomial nonlinearity of order ss have the noninteger power-like behavior of order α/(1s)\alpha/(1-s) near the singularity.Comment: LaTeX, 19 pages, 2 figure

    Electromagnetic Fields on Fractals

    Full text link
    Fractals are measurable metric sets with non-integer Hausdorff dimensions. If electric and magnetic fields are defined on fractal and do not exist outside of fractal in Euclidean space, then we can use the fractional generalization of the integral Maxwell equations. The fractional integrals are considered as approximations of integrals on fractals. We prove that fractal can be described as a specific medium.Comment: 15 pages, LaTe

    Fractional Derivative as Fractional Power of Derivative

    Full text link
    Definitions of fractional derivatives as fractional powers of derivative operators are suggested. The Taylor series and Fourier series are used to define fractional power of self-adjoint derivative operator. The Fourier integrals and Weyl quantization procedure are applied to derive the definition of fractional derivative operator. Fractional generalization of concept of stability is considered.Comment: 20 pages, LaTe

    Continuous Limit of Discrete Systems with Long-Range Interaction

    Full text link
    Discrete systems with long-range interactions are considered. Continuous medium models as continuous limit of discrete chain system are defined. Long-range interactions of chain elements that give the fractional equations for the medium model are discussed. The chain equations of motion with long-range interaction are mapped into the continuum equation with the Riesz fractional derivative. We formulate the consistent definition of continuous limit for the systems with long-range interactions. In this paper, we consider a wide class of long-range interactions that give fractional medium equations in the continuous limit. The power-law interaction is a special case of this class.Comment: 23 pages, LaTe
    corecore