619 research outputs found
Evidence for Hydrodynamic Evolution in Proton-Proton Scattering at LHC Energies
In scattering at LHC energies, large numbers of elementary scatterings
will contribute significantly, and the corresponding high multiplicity events
will be of particular interest. Elementary scatterings are parton ladders,
identified with color flux-tubes. In high multiplicity events, many of these
flux tubes are produced in the same space region, creating high energy
densities. We argue that there are good reasons to employ the successful
procedure used for heavy ion collisions: matter is assumed to thermalizes
quickly, such that the energy from the flux-tubes can be taken as initial
condition for a hydrodynamic expansion. This scenario gets spectacular support
from very recent results on Bose-Einstein correlations in scattering at
900 GeV at LHC.Comment: 11 pages, 20 figure
On the Mass Eigenstate Composition of the 8B Neutrinos from the Sun
The present data of gallium experiments provide indirectly the only
experimental limit on the fraction of mass eigenstate for the B
neutrinos from the Sun. However, if to use the experimental data alone, the
fraction of and, consequently, still is allowed to
be varied within a rather broad range. The further experimental efforts are
needed to clear this point.Comment: 13 pages, 1 figure, 1 table. Corrected version, published in
JCAP04(2007)00
Hanbury Brown-Twiss interferometry and second-order correlations of inflaton quanta
The quantum theory of optical coherence is applied to the scrutiny of the
statistical properties of the relic inflaton quanta. After adapting the
description of the quantized scalar and tensor modes of the geometry to the
analysis of intensity correlations, the normalized degrees of first-order and
second-order coherence are computed in the concordance paradigm and are shown
to encode faithfully the statistical properties of the initial quantum state.
The strongly bunched curvature phonons are not only super-Poissonian but also
super-chaotic. Testable inequalities are derived in the limit of large angular
scales and can be physically interpreted in the light of the tenets of Hanbury
Brown-Twiss interferometry. The quantum mechanical results are compared and
contrasted with different situations including the one where intensity
correlations are the result of a classical stochastic process. The survival of
second-order correlations (not necessarily related to the purity of the initial
quantum state) is addressed by defining a generalized ensemble where
super-Poissonian statistics is an intrinsic property of the density matrix and
turns out to be associated with finite volume effects which are expected to
vanish in the thermodynamic limit.Comment: 42 pages, 3 included figures; corrected typos; to appear in Physical
Review
Imaging Three Dimensional Two-particle Correlations for Heavy-Ion Reaction Studies
We report an extension of the source imaging method for analyzing
three-dimensional sources from three-dimensional correlations. Our technique
consists of expanding the correlation data and the underlying source function
in spherical harmonics and inverting the resulting system of one-dimensional
integral equations. With this strategy, we can image the source function
quickly, even with the finely binned data sets common in three-dimensional
analyses.Comment: 13 pages, 11 figures, submitted to Physical Review
Deciphering nonfemtoscopic two-pion correlations in collisions with simple analytical models
A simple model of nonfemtoscopic particle correlations in proton-proton
collisions is proposed. The model takes into account correlations induced by
the conservation laws as well as correlations induced by minijets. It
reproduces well the two-pion nonfemtoscopic correlations of like-sign and
unlike-sign pions in proton-proton collision events at GeV
analyzed by the ALICE Collaboration. We also argue that similar nonfemtoscopic
correlations can appear in the hydrodynamic picture with event-by-event
fluctuating nonsymmetric initial conditions that are typically associated with
nonzero higher-order flow harmonics.Comment: 21 pages, 10 figures, misprints correcte
RC J1148+0455 identification: gravitational lens or group of galaxies ?
The structure of the radio source RC B1146+052 of the ``Cold'' catalogue is
investigated by data of the MIT-GB-VLA survey at 4850 MHz. This source belongs
to the steep spectrum radio sources subsample of the RC catalogue. Its spectral
index is = -1.04. The optical image of this source obtained with 6m
telescope is analysed. The radio source center is situated in a group of 8
galaxies of about 24 in the R-filter. The possible explanations of the
complex structure of radio components are considered.Comment: 6 pages, 5 figures, uses psfig.sty. This was the poster as presented
on Gamow Memorial Internat. Conference GMIC'99 "Early Universe: Cosmological
Problems and Instrumental Technologies" in St.Petersburg, 23-27 Aug., 1999.
Submitted to Proceedings to be published in A&A Transaction
Investigation of the New Local Group Galaxy VV 124
We present the results of our stellar photometry and spectroscopy for the new
Local Group galaxy VV 124 (UGC 4879) obtained with the 6-m BTA telescope. The
presence of a few bright supergiants in the galaxy indicates that the current
star formation process is weak. The apparent distribution of stars with
different ages in VV 124 does not differ from the analogous distributions of
stars in irregular galaxies, but the ratio of the numbers of young and old
stars indicates that VV 124 belongs to the rare Irr/Sph type of galaxies. The
old stars (red giants) form the most extended structure, a thick disk with an
exponential decrease in the star number density to the edge. Definitely, the
young population unresolvable in images makes a great contribution to the
background emission from the central galactic regions. The presence of young
stars is also confirmed by the [O III] emission line visible in the spectra
that belongs to extensive diffuse galactic regions. The mean radial velocity of
several components (two bright supergiants, the unresolvable stellar
population, and the diffuse gas) is v_h = -70+/-15 km/s and the velocity with
which VV 124 falls into the Local Group is v_LG = -12+/-15 km/s. We confirm the
distance to the galaxy D = 1.1+/-0.1 Mpc and the metallicity of red giants
([Fe/H] = -1.37) found by Kopylov et al. (2008).VV 124 is located on the
periphery of the Local Group approximately at the same distance from M 31 and
our Galaxy and is isolated from other galaxies. The galaxy LeoA nearest to it
is 0.5 Mpc away.Comment: 10 pages, 8 figures. Accepted for publication in Astronomy Letters
(2010, Vol. 36, No. 5, pp. 309-318
- …