191 research outputs found
Overview of technical solutions and assessment of clinical usefulness of capsule endoscopy
The paper presents an overview of endoscopic capsules with particular emphasis on technical aspects. It indicates common problems in capsule endoscopy such as: (1) limited wireless communication (2) the use of capsule endoscopy in the case of partial patency of the gastrointestinal tract, (3) limited imaging area, (4) external capsule control limitations. It also presents the prospects of capsule endoscopy, the most recent technical solutions for biopsy and the mobility of the capsule in the gastrointestinal tract. The paper shows the possibilities of increasing clinical usefulness of capsule endoscopy resulting from technological limitations. Attention has also been paid to the current role of capsule endoscopy in screening tests and the limitations of its effectiveness. The paper includes the author's recommendations concerning the direction of further research and the possibility of enhancing the scope of capsule endoscop
Blood pulsation measurement using cameras operating in visible light: limitations
Background: The paper presents an automatic method for analysis and processing of images from a camera operating in visible light. This analysis applies to images containing the human facial area (body) and enables to measure the blood pulse rate. Special attention was paid to the limitations of this measurement method taking into account the possibility of using consumer cameras in real conditions (different types of lighting, different camera resolution, camera movement). Methods: The proposed new method of image analysis and processing was associated with three stages: (1) image pre-processing-allowing for the image filtration and stabilization (object location tracking); (2) main image processing-allowing for segmentation of human skin areas, acquisition of brightness changes; (3) signal analysis-filtration, FFT (Fast Fourier Transformation) analysis, pulse calculation. Results and conclusions: The presented algorithm and method for measuring the pulse rate has the following advantages: (1) it allows for non-contact and non-invasive measurement; (2) it can be carried out using almost any camera, including webcams; (3) it enables to track the object on the stage, which allows for the measurement of the heart rate when the patient is moving; (4) for a minimum of 40,000 pixels, it provides a measurement error of less than ±2 beats per minute for p < 0.01 and sunlight, or a slightly larger error (±3 beats per minute) for artificial lighting; (5) analysis of a single image takes about 40 ms in Matlab Version 7.11.0.584 (R2010b) with Image Processing Toolbox Version 7.1 (R2010b)
Automatic method of analysis and measurement of additional parameters of corneal deformation in the Corvis tonometer
Introduction: The method for measuring intraocular pressure using the Corvis tonometer provides a sequence of images of corneal deformation. Deformations of the cornea are recorded using the ultra-high-speed Scheimpflug camera. This paper presents a new and reproducible method of analysis of corneal deformation images that allows for automatic measurements of new features, namely new three parameters unavailable in the original software. Material and method: The images subjected to processing had a resolution of 200 × 576 × 140 pixels. They were acquired from the Corvis tonometer and simulation. In total 14000 2D images were analysed. The image analysis method proposed by the author automatically detects the edge of the cornea and sclera fragments. For this purpose, new methods of image analysis and processing proposed by the author as well as those well-known, such as Canny filter, binarization, median filtering etc., have been used. The presented algorithms were implemented in Matlab (version 7.11.0.584 - R2010b) with Image Processing toolbox (version 7.1 -R2010b) using both known algorithms for image analysis and processing and those proposed by the author. Results: Owing to the proposed algorithm it is possible to determine three parameters: (1) the degree of the corneal reaction relative to the static position; (2) the corneal length changes; (3) the ratio of amplitude changes to the corneal deformation length. The corneal reaction is smaller by about 30.40% compared to its static position. The change in the corneal length during deformation is very small, approximately 1% of its original length. Parameter (3) enables to determine the applanation points with a correlation of 92% compared to the conventional method for calculating corneal flattening areas. The proposed algorithm provides reproducible results fully automatically within a few seconds/per patient using Core i7 processor. Conclusions: Using the proposed algorithm, it is possible to measure new, additional parameters of corneal deformation, which are not available in the original software. The presented analysis method provides three new parameters of the corneal reaction. Detailed clinical studies based on this method will be presented in subsequent papers
Quantitative assessment of the impact of biomedical image acquisition on the results obtained from image analysis and processing
Introduction: Dedicated, automatic algorithms for image analysis and processing are becoming more and more common in medical diagnosis. When creating dedicated algorithms, many factors must be taken into consideration. They are associated with selecting the appropriate algorithm parameters and taking into account the impact of data acquisition on the results obtained. An important feature of algorithms is the possibility of their use in other medical units by other operators. This problem, namely operator's (acquisition) impact on the results obtained from image analysis and processing, has been shown on a few examples.
Material and method: The analysed images were obtained from a variety of medical devices such as thermal imaging, tomography devices and those working in visible light. The objects of imaging were cellular elements, the anterior segment and fundus of the eye, postural defects and others. In total, almost 200'000 images coming from 8 different medical units were analysed. All image analysis algorithms were implemented in C and Matlab.
Results: For various algorithms and methods of medical imaging, the impact of image acquisition on the results obtained is different. There are different levels of algorithm sensitivity to changes in the parameters, for example: (1) for microscope settings and the brightness assessment of cellular elements there is a difference of 8%; (2) for the thyroid ultrasound images there is a difference in marking the thyroid lobe area which results in a brightness assessment difference of 2%. The method of image acquisition in image analysis and processing also affects: (3) the accuracy of determining the temperature in the characteristic areas on the patient's back for the thermal method - error of 31%; (4) the accuracy of finding characteristic points in photogrammetric images when evaluating postural defects - error of 11%; (5) the accuracy of performing ablative and non-ablative treatments in cosmetology - error of 18% for the nose, 10% for the cheeks, and 7% for the forehead. Similarly, when: (7) measuring the anterior eye chamber - there is an error of 20%; (8) measuring the tooth enamel thickness - error of 15%; (9) evaluating the mechanical properties of the cornea during pressure measurement - error of 47%.
Conclusions: The paper presents vital, selected issues occurring when assessing the accuracy of designed automatic algorithms for image analysis and processing in bioengineering. The impact of acquisition of images on the problems arising in their analysis has been shown on selected examples. It has also been indicated to which elements of image analysis and processing special attention should be paid in their design
Quantitative assessment of the impact of blood pulsation on intraocular pressure measurement results in healthy subjects
Background. Blood pulsation affects the results obtained using various medical devices in many different ways. Method. The paper proves the effect of blood pulsation on intraocular pressure measurements. Six measurements for each of the 10 healthy subjects were performed in various phases of blood pulsation. A total of 8400 corneal deformation images were recorded. The results of intraocular pressure measurements were related to the results of heartbeat phases measured with a pulse oximeter placed on the index finger of the subject's left hand. Results. The correlation between the heartbeat phase measured with a pulse oximeter and intraocular pressure is 0.69±0.26 (p<0.05). The phase shift calculated for the maximum correlation is equal to 60±40° (p<0.05). When the moment of measuring intraocular pressure with an air-puff tonometer is not synchronized, the changes in IOP for the analysed group of subjects can vary in the range of ±2.31 mmHg (p<0.3). Conclusions. Blood pulsation has a statistically significant effect on the results of intraocular pressure measurement. For this reason, in modern ophthalmic devices, the measurement should be synchronized with the heartbeat phases
Segmentation in dermatological hyperspectral images: dedicated methods
Background: Segmentation of hyperspectral medical images is one of many image segmentation methods which require profiling. This profiling involves either the adjustment of existing, known image segmentation methods or a proposal of new dedicated methods of hyperspectral image segmentation. Taking into consideration the size of analysed data, the time of analysis is of major importance. Therefore, the authors proposed three new dedicated methods of hyperspectral image segmentation with special reference to the time of analysis. Methods: The segmentation methods presented in this paper were tested and profiled to the images acquired from different hyperspectral cameras including SOC710 Hyperspectral Imaging System, Specim sCMOS-50-V10E. Correct functioning of the method was tested for over 10,000 2D images constituting the sequence of over 700 registrations of the areas of the left and right hand and the forearm. Results: As a result, three new methods of hyperspectral image segmentation have been proposed: fast analysis of emissivity curves (SKE), 3D segmentation (S3D) and hierarchical segmentation (SH). They have the following features: are fully automatic; allow for implementation of fast segmentation methods; are profiled to hyperspectral image segmentation; use emissivity curves in the model form, can be applied in any type of objects not necessarily biological ones, are faster (SKE-2.3 ms, S3D-1949 ms, SH-844 ms for the computer with Intel® Core i7 4960X CPU 3.6 GHz) and more accurate (SKE-accuracy 79 %, S3D-90 %, SH-92 %) in comparison with typical methods known from the literature. Conclusions: Profiling and/or proposing new methods of hyperspectral image segmentation is an indispensable element of developing software. This ensures speed, repeatability and low sensitivity of the algorithm to changing parameters
Novel dynamic corneal response parameters in a practice use: a critical review
Background: Non-contact tonometers based on the method using air puff and
Scheimpflug’s fast camera are one of the latest devices allowing the measurement of
intraocular pressure and additional biomechanical parameters of the cornea. Biomechanical
features significantly affect changes in intraocular pressure values, as well as
their changes, may indicate the possibility of corneal ectasia. This work presents the
latest and already known biomechanical parameters available in the new offered software.
The authors focused on their practical application and the diagnostic credibility
indicated in the literature.
Discussion: An overview of available literature indicates the importance of new
dynamic corneal parameters. The latest parameters developed on the basis of biomechanics
analysis of corneal deformation process, available in non-contact tonometers
using Scheimpflug’s fast camera, are used in the evaluation of laser refractive surgery
procedures, e.g. LASIK procedure. In addition, the assessment of changes in biomechanically
corrected intraocular pressure confirms its independence from changes in
the corneal biomechanics which may allow an intraocular pressure real assessment.
The newly developed Corvis Biomechanical Index combined with the corneal tomography
and topography assessment is an important aid in the classification of patients
with keratoconus.
Conclusion: New parameters characterising corneal deformation, including Corvis
Biomechanical Index and biomechanical compensated intraocular pressure, significantly
extend the diagnostic capabilities of this device and may be helpful in assessing
corneal diseases of the eye. Nevertheless, further research is needed to confirm their
diagnostic pertinence
Machine learning and medicine: book review and commentary
This article is a review of the book “Master machine learning algorithms, discover how
they work and implement them from scratch” (ISBN: not available, 37 USD, 163 pages)
edited by Jason Brownlee published by the Author, edition, v1.10 http://MachineLearningMastery.
com. An accompanying commentary discusses some of the issues that are
involved with use of machine learning and data mining techniques to develop predictive
models for diagnosis or prognosis of disease, and to call attention to additional
requirements for developing diagnostic and prognostic algorithms that are generally
useful in medicine. Appendix provides examples that illustrate potential problems with
machine learning that are not addressed in the reviewed book
A clinical utility assessment of the automatic measurement method of the quality of Meibomian glands
No outside funding was received for this study., This research was supported by grants from the Medical University of Silesia in Katowice, Grant No. KNW-1-023/N/6/0; the National Natural Science Foundation of China (31600758); Beijing Natural Science Foundation (7174287); the priming scientific research foundation for the junior researcher in Beijing Tongren Hospital, Capital Medical University (2015-YJJZZL- 008) and Beijing Key Laboratory of Ophthalmology and Visual Science (2016YKSJ02).Background: Meibomian gland dysfunction (MGD) is one of the most common diseases observed in clinics and is the leading cause of evaporative dry eye. Today, diagnostics of MGD is not fully automatic yet and is based on a qualitative assessment made by an ophthalmologist. Therefore, an automatic analysis method was developed to assess MGD quantiatively. Materials: The analysis made use of 228 images of 57 patients recorded by OCULUS Keratograph® 5 M with a resolution of 1024 × 1360 pixels concern 30 eyes of healthy individuals (14 women and 16 men) and 27 eyes of sick patients (10 women and 17 men). The diagnosis of dry eye was made according to the consensus of DED in China (2013). Methods: The presented method of analysis is a new, developed method enabling an automatic, reproducible and quantitative assessment of Meibomian glands. The analysis relates to employing the methods of analysis and image processing. The analysis was conducted in the Matlab environment Version 7.11.0.584, R2010b, Java VM Version: Java 1.6.0_17-b04 with Sun Microsystems Inc. with toolboxes: Statistical, Signal Processing and Image Processing. Results: The presented, new method of analysis of Meibomian glands is fully automatic, does not require operator's intervention, allows obtaining reproducible results and enables a quantitative assessment of Meibomian glands. Compared to the other known methods, particularly with the method described in literature it allows obtaining better sensitivity (98%) and specificity (100%) results by 2%.Medical University of Silesia in Katowice; National Natural Science Foundation of China; Natural Science Foundation of Beijing Municipalit
- …