13 research outputs found

    Impact of change in climate and policy from 1988 to 2007 on environmental and microbial variables at the time series station Boknis Eck, Baltic Sea

    Get PDF
    Phytoplankton and bacteria are sensitive indicators of environmental change. The temporal development of these key organisms was monitored from 1988 to the end of 2007 at the time series station Boknis Eck in the western Baltic Sea. This period was characterized by the adaption of the Baltic Sea ecosystem to changes in the environmental conditions caused by the conversion of the political system in the southern and eastern border states, accompanied by the general effects of global climate change. Measured variables were chlorophyll, primary production, bacteria number, -biomass and -production, glucose turnover rate, macro-nutrients, pH, temperature and salinity. Negative trends with time were recorded for chlorophyll, bacteria number, bacterial biomass and bacterial production, nitrate, ammonia, phosphate, silicate, oxygen and salinity while temperature, pH, and the ratio between bacteria numbers and chlorophyll increased. Strongest reductions with time occurred for the annual maximum values, e.g. for chlorophyll during the spring bloom or for nitrate during winter, while the annual minimum values remained more stable. In deep water above sediment the negative trends of oxygen, nitrate, phosphate and bacterial variables as well as the positive trend of temperature were similar to those in the surface while the trends of salinity, ammonia and silicate were opposite to those in the surface. Decreasing oxygen, even in the surface layer, was of particular interest because it suggested enhanced recycling of nutrients from the deep hypoxic zones to the surface by vertical mixing. The long-term seasonal patterns of all variables correlated positively with temperature, except chlorophyll and salinity. Salinity correlated negatively with all bacterial variables (as well as precipitation) and positively with chlorophyll. Surprisingly, bacterial variables did not correlate with chlorophyll, which may be inherent with the time lag between the peaks of phytoplankton and bacteria during spring. Compared to the 20-yr averages of the environmental and microbial variables, the strongest negative deviations of corresponding annual averages were measured about ten years after political change for nitrate and bacterial secondary production (~ −60%), followed by chlorophyll (−50%) and bacterial biomass (−40%). Considering the circulation of surface currents in the Baltic Sea we interpret the observed patterns of the microbial variables at the Boknis Eck time series station as a consequence of the improved management of water resources after 1989 and – to a minor extent – the trends of the climate variables salinity and temperature

    Dissolved methane during hypoxic events at the Boknis Eck Time Series Station (Eckernförde Bay, SW Baltic Sea)

    Get PDF
    Dissolved CH4 was measured in the water column at the Boknis Eck (BE) time series station in the Eckernförde Bay (SW Baltic Sea) on a monthly basis from June 2006 to November 2008. The water column at BE was always supersaturated with CH4 and, therefore, CH4 was released to the atmosphere throughout the sampling period: the mean CH4 surface (1 m) saturation at BE was 554±317%. A pulse of enhanced CH4 emissions occurs when the CH4 accumulation in the hypoxic bottom layer during summer is terminated in late summer/autumn. We did not detect a straightforward relationship between periods of enhanced CH4 in the bottom layer and hypoxic events at BE: the sedimentary release of CH4 seemed to be mainly triggered by sedimenting organic material from phytoplankton blooms. We conclude that future CH4 emissions from BE will be determined by the intensity of phytoplankton blooms, which in turn will be influenced by eutrophication. However, hypoxic events seem to have only a modulating effect on the enhancement of sedimentary methanogenesis and the subsequent release of CH4 to the water column

    Regionale Verteilung der Bakterien-Abundanz und Aktivität in der Unterelbe und Unterweser: Ein Vergleich zwischen beiden Ästuaren (=Regional distribution of bacterial abundance and activity in the Lower Elbe and Weser Rivers A comparison between both estuaries)

    Get PDF
    Die Mündungsgebiete von Elbe und Weser bilden die beiden größten deutschen Ästuare. Sie weisen eine Reihe von hydrologischen, geologischen und klimatischen Gemeinsamkeiten auf. Ziel der Arbeit war es zu untersuchen, ob und wieweit diese Gemeinsamkeiten auch in planktologisch/mikrobiologischer Hinsicht gelten. Hierzu wurden bei niedrigem Oberwasserabfluss im Juni 2005 Oberflächenproben in 10 km Abständen in beiden Ästuaren von ihrem limnischen Bereich bis in die Deutsche Bucht genommen. Untersucht wurden die abiotischen Parameter Temperatur, Salzgehalt, Gesamt- und Feintrübung < 2 μm sowie die biologischen Parameter Chlorophyll a und Phäopigmente, Bakterienzahl und bakterielle Biomasseproduktion. Die biologischen Variablen hatten ihr Maximum stets in der limnischen Zone. Hier beliefen sich die Werte in der Elbe auf 10,3 μg l-1 Chlorophyll a (Chl a), 9,5 x 109 l-1 Bakterien (BZ) und eine bakterielle Biomasseproduktion (BBP) von 4,3 μg C l-1 h-1. In der Weser lagen sie bei 22,5 μg l-1 (Chl a), 7,8 x 109 l-1 (BZ) und 4,1 μg C l-1 h-1 (BBP). Ein Minimum wurde im Bereich der oberen Brackwassergrenze mit 5,2 μg l-1 (Chl a), 5,4 x 109 l-1 (BZ) und 1,0 μg C l-1 h-1 (BBP) in der Elbe und mit 3,8 μg l-1 (Chl a), 7,4 x 109 l-1 (BZ) und 1,4 μg C l-1 h-1 (BBP) in der Weser gefunden. An der seewärtigen Grenze der Ästuarregionen trat ein erneutes Maximum auf. Damit stimmten beide Ästuare sowohl in der regionalen Verteilung als auch in der Größe der Parameter weitgehend überein

    Changing bacterioplankton growth characteristics on a large spatial scale: oligotroph versus mesotrophic ocean

    Get PDF
    This study deals with large spatial scale differences in the ratios between bacterial leucine incorporation (TLi: protein synthesis) and thymidine incorporation (TTi: DNA synthesis) in oligotrophic offshore and comparatively more mesotrophic inshore (sub)tropical regions of the Atlantic Ocean. Observations were derived from 2 RV ‘Polarstern’ cruises, one of which traversed a meridional mid-ocean transect while the other followed the African coast line. Average values (from 42°N to 35°S) of TLi, TTi and chlorophyll a (chl a) concentration were 40.3 pmol leucine l–1 h–1, 1.32 pmol thymidine l–1 h–1 and 0.18 µg chl a l–1 along the offshore transect, compared to 51.8 pmol leucine l–1 h–1, 2.72 pmol thymidine l–1 h–1 and 0.29 µg chl a l–1 along the inshore transect. Mean values of the TLi:TTi ratio (which defines bacterial growth characteristics) were 32.4 in offshore waters and 20.5 in inshore waters. Offshore ratios of TLi:chl a or TTi:chl a (proxy for bacterial substrate) were 274.1 and 8.5, compared to inshore ratios of 198.7 and 10.0, respectively. This means that, per unit of chl a, considerably higher bacterial protein synthesis was supported in water farther from the coast than near the coast, whereas bacterial DNA synthesis per unit chl a was slightly higher in the latter. Because temperature variability along the cruise tracts was rather similar (except in the Benguela upwelling region), we assume that substrate supply was mainly responsible for the observed significant differences in bacterial growth characteristics. In addition, the potential different contributions of picocyanobacteria to leucine uptake (TLi) must be considered. We conclude that the different TLi:TTi ratios in (sub)tropical offshore and inshore waters reflect reactions of the relevant bacterial communities to prevailing environmental conditions. Therefore, we did not interpret our results in the context of the currently used terms ‘balanced’ or ‘unbalanced’ growth. Bacterial community growth may be balanced in both regions of study, but at different levels of the TLi:TTi ratio

    Der Anteil der Bakterien am Abbau der organischen Substanz im Elbe-Ästuar

    Get PDF
    An vier Tidenzyklus-Stationen von 21 bis 36 Std. Dauer wurde auf einem Längsschnitt von Hamburg bis zur Außenelbe untersucht, welchen Anteil die Bakterien am Abbau der organischen Substanz haben. Der Gesamt-Abbau durch die planktische Organismengemeinschaft wurde aus dem Sauerstoffverbrauch mit einem angenommenen Respirationsquotienten von 0,85 bestimmt. Der bakterielle Abbau wurde über die Biomasse-Produktion und die Wachstums-Effizienz der Bakterien ermittelt. Die Tidenzyklus-Stationen mit einer hohen zeitlichen Auflösung zeigten eine große Variabilität der Abbauprozesse während der Gezeiten. Die Mittelwerte ergaben, dass der Gesamt-Abbau im oberen noch limnischen Bereich 10,2 μg C l-1 h-1 betrug mit einem bakteriellen Anteil von 82%. Flussabwärts ging der Gesamt-Abbau auf 2,7 μg C l-1 h-1 zurück und der bakterielle Anteil belief sich auf rd. 50 %. Der Längsschnitt von Hamburg bis Neuwerk mit einer hohen räumlichen Auflösung zeigte eine grundsätzlich ähnliche regionale Verteilung. Der hohe Anteil des bakteriellen Abbaus in dem oberen limnischen Ästuarbereich geht darauf zurück, dass das hier aus dem Mittellauf der Elbe eingeschwemmte Phytoplankton infolge Lichtmangels größtenteils abstirbt. Die Ursachen liegen in der großen Wassertiefe des Hamburger Hafengebietes und der starken Gezeitendurchmischung der Wassersäule. Dadurch vermindert sich die Respiration des Phytoplanktons und die Abbautätigkeit ist daher im Wesentlichen auf die Bakterien und das Zooplankton beschränkt. Von diesen beiden verbleibenden Hauptkomponenten des Flussplanktons spielen die Bakterien die wichtigere Rolle beim Abbau der organischen Substanz im Elbe-Ästuar

    Hydrographisch-chemische und planktologische Untersuchungen im Nord-Ostsee-Kanal

    Get PDF
    Die Mündungsgebiete von Elbe und Weser bilden die beiden größten deutschen Ästuare. Sie weisen eine Reihe von hydrologischen, geologischen und klimatischen Gemeinsamkeiten auf. Ziel der Arbeit war es zu untersuchen, ob und wieweit diese Gemeinsamkeiten auch in planktologisch/mikrobiologischer Hinsicht gelten. Hierzu wurden bei niedrigem Oberwasserabfluss im Juni 2005 Oberflächenproben in 10 km Abständen in beiden Ästuaren von ihrem limnischen Bereich bis in die Deutsche Bucht genommen. Untersucht wurden die abiotischen Parameter Temperatur, Salzgehalt, Gesamt- und Feintrübung < 2 ?m sowie die biologischen Parameter Chlorophyll a und Phäopigmente, Bakterienzahl und bakterielle Biomasseproduktion. Die biologischen Variablen hatten ihr Maximum stets in der limnischen Zone. Hier beliefen sich die Werte in der Elbe auf 10,3 ?g l-1 Chlorophyll a (Chl a), 9,5 x 109 l-1 Bakterien (BZ) und eine bakterielle Biomasseproduktion (BBP) von 4,3 ?g C l-1 h-1. In der Weser lagen sie bei 22,5 ?g l-1 (Chl a), 7,8 x 109 l-1 (BZ) und 4,1 ?g C l-1 h-1 (BBP). Ein Minimum wurde im Bereich der oberen Brackwassergrenze mit 5,2 ?g l-1 (Chl a), 5,4 x 109 l-1 (BZ) und 1,0 ?g C l-1 h-1 (BBP) in der Elbe und mit 3,8 ?g l-1 (Chl a), 7,4 x 109 l-1 (BZ) und 1,4 ?g C l-1 h-1 (BBP) in der Weser gefunden. An der seewärtigen Grenze der Ästuarregionen trat ein erneutes Maximum auf. Damit stimmten beide Ästuare sowohl in der regionalen Verteilung als auch in der Größe der Parameter weitgehend überein
    corecore