8 research outputs found

    Systemic delivery of AAV8 in utero results in gene expression in diaphragm and limb muscle: treatment implications for muscle disorders

    Get PDF
    One of the major challenges in the treatment of primary muscle disorders, which often affect many muscle groups, is achieving efficient, widespread transgene expression in muscle. In utero gene transfer can potentially address this problem by accomplishing gene delivery when the tissue mass is small and the immune system is immature. Previous studies with systemic in utero adeno-associated viral (AAV) vector serotype 1 gene delivery to embryonic day 16 (E-16) pups resulted in high levels of transduction in diaphragm and intercostal muscles, but no detectable transgene expression in limb muscles. Recently newer AAV serotypes such as AAV8 have demonstrated widespread and high transgene expression in skeletal muscles and diaphragm by systemic delivery in adult and neonatal mice. We tested AAV8 vector gene delivery by intraperitoneal administration in E-16 mice in utero. Using an AAV8 vector carrying a lacZ reporter gene, we observed high level transduction of diaphragm and intercostal muscles and more moderate transduction of multiple limb muscles and heart. Our current studies demonstrate the potential of AAV8 to achieve widespread muscle transduction in utero and suggest its therapeutic potential for primary muscle disorders

    Improvement of the mdx mouse dystrophic phenotype by systemic in utero AAV8 delivery of a minidystrophin gene

    Get PDF
    Duchenne muscular dystrophy (DMD) is a devastating primary muscle disease with pathological changes in skeletal muscle that are ongoing at birth. Progressive deterioration in striated muscle function in affected individuals ultimately results in early death due to cardio-pulmonary failure. Since affected individuals can be identified prior to birth by prenatal genetic testing for DMD, gene replacement treatment could be started in utero. This approach offers the possibility of preventing pathological changes in muscle that begin early in life. To test in utero gene transfer utilizing the AAV8 vector in the mdx mouse model of DMD, a minidystrophin gene driven by the human cytomegalovirus promoter was delivered systemically by intraperitoneal injection to the fetus at embryonic day 16. Treated mdx mice studied at 9 weeks after birth demonstrated widespread expression of recombinant dystrophin in skeletal muscle, restoration of the dystrophin associated glycoprotein complex in dystrophin-expressing muscle fibers, improved muscle pathology, and functional benefit to the transduced diaphragm compared to untreated littermate controls. These results support the potential of the AAV8 vector to efficiently cross the blood vessel barrier to achieve systemic gene transfer to skeletal muscle in utero in a mouse model of muscular dystrophy, to significantly improve the dystrophic phenotype and to ameliorate the processes that lead to exhaustion of skeletal muscle regenerative capacity

    Vector Systems for Prenatal Gene Therapy: Choosing Vectors for Different Applications

    No full text
    This chapter gives a comparative review of the different vector systems applied to date in prenatal gene therapy experiments highlighting the need for versatility and choice for application in accordance with the actual aim of the study. It reviews the key characteristics of the four main gene therapy vector systems and gives examples for their successful application in prenatal gene therapy experiments

    Stable human FIX expression after 0.9G intrauterine gene transfer of self-complementary adeno-associated viral vector 5 and 8 in macaques

    No full text
    Intrauterine gene transfer (IUGT) offers ontological advantages including immune naiveté mediating tolerance to the vector and transgenic products, and effecting a cure before development of irreversible pathology. Despite proof-of-principle in rodent models, expression efficacy with a therapeutic transgene has yet to be demonstrated in a preclinical nonhuman primate (NHP) model. We aimed to determine the efficacy of human Factor IX (hFIX) expression after adeno-associated-viral (AAV)-mediated IUGT in NHP. We injected 1.0-1.95 × 10 vector genomes (vg)/kg of self-complementary (sc) AAV5 and 8 with a LP1-driven hFIX transgene intravenously in 0.9G late gestation NHP fetuses, leading to widespread transduction with liver tropism. Liver-specific hFIX expression was stably maintained between 8 and 112% of normal activity in injected offspring followed up for 2-22 months. AAV8 induced higher hFIX expression (P = 0.005) and milder immune response than AAV5. Random hepatocellular integration was found with no hotspots. Transplacental spread led to low-level maternal tissue transduction, without evidence of immunotoxicity or germline transduction in maternal oocytes. A single intravenous injection of scAAV-LP1-hFIXco to NHP fetuses in late-gestation produced sustained clinically-relevant levels of hFIX with liver-specific expression and a non-neutralizing immune response. These data are encouraging for conditions where gene transfer has the potential to avert perinatal death and long-term irreversible sequelae

    Candidate Diseases for Prenatal Gene Therapy

    No full text
    Prenatal gene therapy aims to deliver genes to cells and tissues early in prenatal life, allowing correction of a genetic defect, before irreparable tissue damage has occurred. In contrast to postnatal gene therapy, prenatal application may target genes to a large population of stem cells, and the smaller fetal size allows a higher vector to target cell ratio to be achieved. Early gestation delivery may allow the development of immune tolerance to the transgenic protein, which would facilitate postnatal repeat vector administration if needed. Moreover, early delivery would avoid anti-vector immune responses which are often acquired in postnatal life. The NIH Recombinant DNA Advisory Committee considered that a candidate disease for prenatal gene therapy should pose serious morbidity and mortality risks to the fetus or neonate, and not have any effective postnatal treatment. Prenatal gene therapy would therefore be appropriate for life-threatening disorders, in which prenatal gene delivery maintains a clear advantage over cell transplantation or postnatal gene therapy. If deemed safer and more efficacious, prenatal gene therapy may be applicable for nonlethal conditions if adult gene transfer is unlikely to be of benefit. Many candidate diseases will be inherited congenital disorders such as thalassaemia or lysosomal storage disorders. However, obstetric conditions such as fetal growth restriction may also be treated using a targeted gene therapy approach. In each disease, the condition must be diagnosed prenatally, either via antenatal screening and prenatal diagnosis, for example, in the case of hemophilias, or by ultrasound assessment of the fetus, for example, congenital diaphragmatic hernia. In this chapter, we describe some examples of the candidate diseases and discuss how a prenatal gene therapy approach might work
    corecore