1,047 research outputs found

    Energies of B_s meson excited states - a lattice study

    Full text link
    This is a follow-up to our earlier work on the energies and radial distributions of heavy-light mesons. The heavy quark is taken to be static (infinitely heavy) and the light quark has a mass about that of the strange quark. We now concentrate on the energies of the excited states with higher angular momentum and with a radial node. A new improvement is the use of hypercubic blocking in the time direction. The calculation is carried out with dynamical fermions on a 16 cubed times 32 lattice with a lattice spacing approximately 0.1 fm generated using a non-perturbatively improved clover action. In nature the closest equivalent of this heavy-light system is the B_s meson, which allows us to compare our lattice calculations to experimental results (where available) or to give a prediction where the excited states, particularly P-wave states, should lie. We pay special attention to the spin-orbit splitting, to see which one of the states (for a given angular momentum L) has the lower energy. An attempt is made to understand these results in terms of the Dirac equation.Comment: 35 pages. v3: Data from two new lattices added. New results in several chapter

    Population imbalanced fermions in harmonically trapped optical lattices

    Full text link
    The attractive Fermi-Hubbard Hamiltonian is solved via the Bogoliubov-de Gennes formalism to analyze the ground state phases of population imbalanced fermion mixtures in harmonically trapped two-dimensional optical lattices. In the low density limit the superfluid order parameter modulates in the radial direction towards the trap edges to accommodate the unpaired fermions that are pushed away from the trap center with a single peak in their density. However in the high density limit while the order parameter modulates in the radial direction towards the trap center for low imbalance, it also modulates towards the trap edges with increasing imbalance until the superfluid to normal phase transition occurs beyond a critical imbalance. This leads to a single peak in the density of unpaired fermions for low and high imbalance but leads to double peaks for intermediate imbalance.Comment: 4 pages with 4 figures, accepted to appear in PR

    P-wave Radial distributions of a Heavy-light meson on a lattice

    Get PDF
    This is a follow-up to our earlier work for the charge (vector) and matter (scalar) distributions for S-wave states in a heavy-light meson, where the heavy quark is static and the light quark has a mass about that of the strange quark. The calculation is again carried out with dynamical fermions on a 16^3x24 lattice with a lattice spacing of about 0.14 fm. It is shown that several features of the S- and P-wave distributions are in qualitative agreement with what one expects from a simple one-body Dirac equation interpretation.Comment: 5 pages, 2 figures, Quark Confinement and the Hadron Spectrum VI, Sardinia, Italy, September, 200

    Instability and wavelength selection during step flow growth of metal surfaces vicinal to fcc(001)

    Get PDF
    We study the onset and development of ledge instabilities during growth of vicinal metal surfaces using kinetic Monte Carlo simulations. We observe the formation of periodic patterns at [110] close packed step edges on surfaces vicinal to fcc(001) under realistic molecular beam epitaxy conditions. The corresponding wavelength and its temperature dependence are studied by monitoring the autocorrelation function for step edge position. Simulations suggest that the ledge instability on fcc(1,1,m) vicinal surfaces is controlled by the strong kink Ehrlich-Schwoebel barrier, with the wavelength determined by dimer nucleation at the step edge. Our results are in agreement with recent continuum theoretical predictions, and experiments on Cu(1,1,17) vicinal surfaces.Comment: 4 pages, 4 figures, RevTe

    The Charge and Matter radial distributions of Heavy-Light mesons calculated on a lattice

    Get PDF
    For a heavy-light meson with a static heavy quark, we can explore the light quark distribution. The charge and matter radial distributions of these heavy-light mesons are measured on a 16^3 * 24 lattice at beta=5.7 and a hopping parameter corresponding to a light quark mass about that of the strange quark. Both distributions can be well fitted up to 4 lattice spacings (r approx 0.7 fm) with the exponential form w_i^2(r), where w_i(r)=A exp(-r/r_i). For the charge(c) and matter(m) distributions r_c approx 0.32(2) fm and r_m approx 0.24(2) fm. We also discuss the normalisation of the total charge and matter integrated over all space, finding 1.30(5) and 0.4(1) respectively.Comment: 31 pages including 7 ps figure

    Pair formation and collapse in imbalanced Fermion populations with unequal masses

    Full text link
    We present an exact Quantum Monte Carlo study of the effect of unequal masses on pair formation in Fermionic systems with population imbalance loaded into optical lattices. We have considered three forms of the attractive interaction and find in all cases that the system is unstable and collapses as the mass difference increases and that the ground state becomes an inhomogeneous collapsed state. We also address the question of canonical vs grand canonical ensemble and its role, if any, in stabilizing certain phases

    B_s meson excited states from the lattice

    Get PDF
    This is a follow-up to our earlier work [Phys. Rev. D 65, 014512 (2002); Eur. Phys. J. C 28, 79 (2003); Phys. Rev. D 69, 094505 (2004)] for the energies and the charge (vector) and matter (scalar) distributions for S-wave states in a heavy-light meson, where the heavy quark is static and the light quark has a mass about that of the strange quark. We study the radial distributions of higher angular momentum states, namely P- and D-wave states. In nature the closest equivalent of this heavy-light system is the B_s meson. The calculation is carried out with dynamical fermions on a 16^3 times 32 lattice with a lattice spacing of about 0.10 fm generated with the non-perturbatively improved clover action. It is shown that several features of the energies and radial distributions are in qualitative agreement with what one expects from a simple one-body Dirac equation interpretation.Comment: 6 pages, poster presented at Lattice 2005 (Heavy quarks
    • …
    corecore