3,548 research outputs found
Towards Semantic Fast-Forward and Stabilized Egocentric Videos
The emergence of low-cost personal mobiles devices and wearable cameras and
the increasing storage capacity of video-sharing websites have pushed forward a
growing interest towards first-person videos. Since most of the recorded videos
compose long-running streams with unedited content, they are tedious and
unpleasant to watch. The fast-forward state-of-the-art methods are facing
challenges of balancing the smoothness of the video and the emphasis in the
relevant frames given a speed-up rate. In this work, we present a methodology
capable of summarizing and stabilizing egocentric videos by extracting the
semantic information from the frames. This paper also describes a dataset
collection with several semantically labeled videos and introduces a new
smoothness evaluation metric for egocentric videos that is used to test our
method.Comment: Accepted for publication and presented in the First International
Workshop on Egocentric Perception, Interaction and Computing at European
Conference on Computer Vision (EPIC@ECCV) 201
Photomixotrophic growth of Rhodobacter capsulatus SB1003 on ferrous iron
This study investigates the role iron oxidation plays in the purple non-sulfur bacterium Rhodobacter capsulatus SB1003. This organism is unable to grow photoautotrophically on unchelated ferrous iron [Fe(II)] despite its ability to oxidize chelated Fe(II). This apparent paradox was partly resolved by the discovery that SB1003 can grow photoheterotrophically on the photochemical breakdown products of certain ferric iron–ligand complexes, yet whether it could concomitantly benefit from the oxidation of Fe(II) to fix CO_2 was unknown. Here, we examine carbon fixation by stable isotope labeling of the inorganic carbon pool in cultures growing phototrophically on acetate with and without Fe(II). We show that R. capsulatus SB1003, an organism formally thought incapable of phototrophic growth on Fe(II), can actually harness the reducing power of this substrate and grow photomixotrophically, deriving carbon both from organic sources and from fixation of inorganic carbon. This suggests the possibility of a wider occurrence of photoferrotrophy than previously assumed
Prise en compte de la biodiversité dans les projets d'aménagement : comment améliorer la commande des études environnementales ?
La meilleure prise en compte de la biodiversité, notamment de la nature ordinaire, du fonctionnement des écosystèmes et de la Trame verte et bleue renforce les exigences sur les études d'impact et les mesures compensatoires dans les projets d'aménagement et dans les documents d'urbanisme. Ceci nécessite de disposer de données environnementales suffisantes et pertinentes pour évaluer les impacts d'un projet. A partir d'études sur la biodiversité en ville et sur l'impact des infrastructures de transport, nous identifions les manques ou problèmes dans la formulation des besoins d'inventaires ou de recueil de données naturalistes. Nous proposons des pistes d'amélioration des relations et des attentes réciproques entre aménageurs et fournisseurs de données naturalistes au sens large. / Better biodiversity integration (in particular daily life nature and ecosystems functioning) strengthen impact studies requirement, compensatory measures and ecological network (Trame verte et bleue) integration into both fitting out projects and town planning documents. This requires numerous and relevant environmental data in order to evaluate project possible impacts. Based on cities biodiversity studies and transportation facilities impact, we point out gaps or problems in inventory needs or natural data recollection formulation. We provide ideas for better relations and better mutual expectations between planners and natural data providers
Aspects of noncommutative Lorentzian geometry for globally hyperbolic spacetimes
Connes' functional formula of the Riemannian distance is generalized to the
Lorentzian case using the so-called Lorentzian distance, the d'Alembert
operator and the causal functions of a globally hyperbolic spacetime. As a step
of the presented machinery, a proof of the almost-everywhere smoothness of the
Lorentzian distance considered as a function of one of the two arguments is
given. Afterwards, using a -algebra approach, the spacetime causal
structure and the Lorentzian distance are generalized into noncommutative
structures giving rise to a Lorentzian version of part of Connes'
noncommutative geometry. The generalized noncommutative spacetime consists of a
direct set of Hilbert spaces and a related class of -algebras of
operators. In each algebra a convex cone made of self-adjoint elements is
selected which generalizes the class of causal functions. The generalized
events, called {\em loci}, are realized as the elements of the inductive limit
of the spaces of the algebraic states on the -algebras. A partial-ordering
relation between pairs of loci generalizes the causal order relation in
spacetime. A generalized Lorentz distance of loci is defined by means of a
class of densely-defined operators which play the r\^ole of a Lorentzian
metric. Specializing back the formalism to the usual globally hyperbolic
spacetime, it is found that compactly-supported probability measures give rise
to a non-pointwise extension of the concept of events.Comment: 43 pages, structure of the paper changed and presentation strongly
improved, references added, minor typos corrected, title changed, accepted
for publication in Reviews in Mathematical Physic
A poling study of lead zirconate titanate/polyurethane 0–3 composites
Author name used in this publication: S. T. LauAuthor name used in this publication: K. W. KwokAuthor name used in this publication: F. G. ShinAuthor name used in this publication: S. Kopf2007-2008 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe
Social video: A collaborative video annotation environment to support E-learning
Our social video system allows users to enrich video by additional information like external websites, hypertext, images, other videos, or communication channels. Users are able to annotate whole videos, scenes, and objects in the video. We do not focus on a single user accessing the system but on multiple users watching the video and accessing the annotations others have created. Our web-based prototype differs from classical hypervideo systems because it allows annotation (authoring) and navigation in videos by focusing on collaboration and communication between the users. The prototype is integrated into the online social network Facebook and was evaluated with more than 300 users. The evaluation analyzes the usage of the system with a learning scenario in mind and indicates a learning success of users
Constraints on fluid flow processes in the Hellenic Accretionary Complex (eastern Mediterranean Sea) from numerical modeling
The dynamics of accretionary convergent margins are severely influenced by intense deformation and fluid expulsion. To quantify the fluid pressure and fluid flow velocities in the Hellenic subduction system, we set up 2-D hydrogeological numerical models following two seismic reflection lines across the Mediterranean Ridge. These profiles bracket the along-strike variation in wedge geometry: moderate compression and a >4 km thick underthrust sequence in the west versus enhanced compression and <1 km of downgoing sediment in the center. Input parameters were obtained from preexisting geophysical data, drill cores, and new geotechnical laboratory experiments. A permeability-porosity relationship was determined by a sensitivity analysis, indicating that porosity and intrinsic permeability are small. This hampers the expulsion of fluids and leads to the build up of fluid overpressure in the deeper portion of the wedge and in the underthrust sediment. The loci of maximum fluid pressure are mainly controlled by the compactional fluid source, which generally decreases toward the backstop. However, pore pressure is still high at the decollement level at distances <100 km from the deformation front, either by the incorporation of low permeability evaporites or additional compaction of the wedge sediments in the two profiles. In the west, however, formation of a wide accretionary complex is facilitated by high pore pressure zones. When compared to other large accretionary complexes such as Nankai or Barbados, our results not only show broad similarities but also that near-lithostatic pore pressures may be easier to maintain in the Hellenic Arc because of accentuated collision, some underthrust evaporates, and a thicker underthrust sequence
Microbial community dynamics and coexistence in a sulfide-driven phototrophic bloom
© The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Bhatnagar, S., Cowley, E. S., Kopf, S. H., Pérez Castro, S., Kearney, S., Dawson, S. C., Hanselmann, K., & Ruff, S. E. Microbial community dynamics and coexistence in a sulfide-driven phototrophic bloom. Environmental Microbiome, 15(1),(2020): 3, doi:10.1186/s40793-019-0348-0.Background: Lagoons are common along coastlines worldwide and are important for biogeochemical element cycling, coastal biodiversity, coastal erosion protection and blue carbon sequestration. These ecosystems are frequently disturbed by weather, tides, and human activities. Here, we investigated a shallow lagoon in New England. The brackish ecosystem releases hydrogen sulfide particularly upon physical disturbance, causing blooms of anoxygenic sulfur-oxidizing phototrophs. To study the habitat, microbial community structure, assembly and function we carried out in situ experiments investigating the bloom dynamics over time.
Results: Phototrophic microbial mats and permanently or seasonally stratified water columns commonly contain multiple phototrophic lineages that coexist based on their light, oxygen and nutrient preferences. We describe similar coexistence patterns and ecological niches in estuarine planktonic blooms of phototrophs. The water column showed steep gradients of oxygen, pH, sulfate, sulfide, and salinity. The upper part of the bloom was dominated by aerobic phototrophic Cyanobacteria, the middle and lower parts by anoxygenic purple sulfur bacteria (Chromatiales) and green sulfur bacteria (Chlorobiales), respectively. We show stable coexistence of phototrophic lineages from five bacterial phyla and present metagenome-assembled genomes (MAGs) of two uncultured Chlorobaculum and Prosthecochloris species. In addition to genes involved in sulfur oxidation and photopigment biosynthesis the MAGs contained complete operons encoding for terminal oxidases. The metagenomes also contained numerous contigs affiliating with Microviridae viruses, potentially affecting Chlorobi. Our data suggest a short sulfur cycle within the bloom in which elemental sulfur produced by sulfide-oxidizing phototrophs is most likely reduced back to sulfide by Desulfuromonas sp.
Conclusions: The release of sulfide creates a habitat selecting for anoxygenic sulfur-oxidizing phototrophs, which in turn create a niche for sulfur reducers. Strong syntrophism between these guilds apparently drives a short sulfur cycle that may explain the rapid development of the bloom. The fast growth and high biomass yield of Chlorobi-affiliated organisms implies that the studied lineages of green sulfur bacteria can thrive in hypoxic habitats. This oxygen tolerance is corroborated by oxidases found in MAGs of uncultured Chlorobi. The findings improve our understanding of the ecology and ecophysiology of anoxygenic phototrophs and their impact on the coupled biogeochemical cycles of sulfur and carbon.This work was carried out at the Microbial Diversity summer course at the Marine Biological Laboratory in Woods Hole, MA. The course was supported by grants from National Aeronautics and Space Administration, the US Department of Energy, the Simons Foundation, the Beckman Foundation, and the Agouron Institute. Additional funding for SER was provided by the Marine Biological Laboratory
- …