3 research outputs found
Occurrence of Mycobacterium avium subspecies paratuberculosis across host species and European countries with evidence for transmission between wildlife and domestic ruminants
<p>Abstract</p> <p>Background</p> <p><it>Mycobacterium avium </it>subspecies <it>paratuberculosis </it>(<it>Map</it>) causes an infectious chronic enteritis (paratuberculosis or Johne's disease) principally of ruminants. The epidemiology of <it>Map </it>is poorly understood, particularly with respect to the role of wildlife reservoirs and the controversial issue of zoonotic potential (Crohn's disease). Genotypic discrimination of <it>Map </it>isolates is pivotal to descriptive epidemiology and resolving these issues. This study was undertaken to determine the genetic diversity of <it>Map</it>, enhance our understanding of the host range and distribution and assess the potential for interspecies transmission.</p> <p>Results</p> <p>164 <it>Map </it>isolates from seven European countries representing 19 different host species were genotyped by standardized IS<it>900 </it>- restriction fragment length polymorphism (IS<it>900</it>-RFLP), pulsed-field gel electrophoresis (PFGE), amplified fragment length polymorphisms (AFLP) and mycobacterial interspersed repeat unit-variable number tandem repeat (MIRU-VNTR) analyses. Six PstI and 17 BstEII IS<it>900</it>-RFLP, 31 multiplex [SnaBI-SpeI] PFGE profiles and 23 MIRU-VNTR profiles were detected. AFLP gave insufficient discrimination of isolates for meaningful genetic analysis. Point estimates for Simpson's index of diversity calculated for the individual typing techniques were in the range of 0.636 to 0.664 but a combination of all three methods increased the discriminating power to 0.879, sufficient for investigating transmission dynamics. Two predominant strain types were detected across Europe with all three typing techniques. Evidence for interspecies transmission between wildlife and domestic ruminants on the same property was demonstrated in four cases, between wildlife species on the same property in two cases and between different species of domestic livestock on one property.</p> <p>Conclusion</p> <p>The results of this study showed that it is necessary to use multiple genotyping techniques targeting different sources of genetic variation to obtain the level of discrimination necessary to investigate transmission dynamics and trace the source of <it>Map </it>infections. Furthermore, the combination of genotyping techniques may depend on the geographical location of the population to be tested. Identical genotypes were obtained from <it>Map </it>isolated from different host species co-habiting on the same property strongly suggesting that interspecies transmission occurs. Interspecies transmission of <it>Map </it>between wildlife species and domestic livestock on the same property provides further evidence to support a role for wildlife reservoirs of infection.</p
H2AX/53BP1 foci as a potential pre-treatment marker of HNSCC tumors radiosensitivity – preliminary methodological study and discussion
In order to improve patients’ post-treatment quality of life, a shift from surgery to non-surgical (chemo)radio-treatment is recognized in head and neck oncology. However, about half of HNSCC tumors are resistant to irradiation and an efficient marker of individual tumor radiosensitivity is still missing. We analyzed whether various parameters of DNA double strand break (DSB) repair determined in vitro can predict, prior to clinical treatment initiation, the radiosensitivity of tumors. We compared formation and decrease of γH2AX/53BP1 foci in 48 h after irradiating tumor cell primocultures with 2 Gy of γ-rays. To better understand complex tumor behavior, three different cell type primocultures – CD90−, CD90+, and a mixed culture of these cells – were isolated from 1 clinically radioresistant, 2 radiosensitive, and 4 undetermined HPV–HNSCC tumors and followed separately. While DSB repair was delayed and the number of persisting DSBs increased in the radiosensitive tumors, the results for the radioresistant tumor were similar to cultured normal human skin fibroblasts. Hence, DSB repair kinetics/efficiency may correlate with clinical response to radiotherapy for a subset of HNSCC tumors but the size (and therefore practical relevance) of this subset remains to be determined. The same is true for contribution of different cell type primocultures to tumor radioresistance
γH2AX/53BP1 foci as a potential pre-treatment marker of HNSCC tumors radiosensitivity – preliminary methodological study and discussion
In order to improve patients’ post-treatment quality of life, a shift from surgery to non-surgical (chemo)radio-treatment is recognized in head and neck oncology. However, about half of HNSCC tumors are resistant to irradiation and an efficient marker of individual tumor radiosensitivity is still missing. We analyzed whether various parameters of DNA double strand break (DSB) repair determined in vitro can predict, prior to clinical treatment initiation, the radiosensitivity of tumors. We compared formation and decrease of γH2AX/53BP1 foci in 48 h after irradiating tumor cell primocultures with 2 Gy of γ-rays. To better understand complex tumor behavior, three different cell type primocultures – CD90−, CD90+, and a mixed culture of these cells – were isolated from 1 clinically radioresistant, 2 radiosensitive, and 4 undetermined HPV–HNSCC tumors and followed separately. While DSB repair was delayed and the number of persisting DSBs increased in the radiosensitive tumors, the results for the radioresistant tumor were similar to cultured normal human skin fibroblasts. Hence, DSB repair kinetics/efficiency may correlate with clinical response to radiotherapy for a subset of HNSCC tumors but the size (and therefore practical relevance) of this subset remains to be determined. The same is true for contribution of different cell type primocultures to tumor radioresistance