11 research outputs found

    DIC image reconstruction using an energy minimization framework to visualize optical path length distribution

    Get PDF
    Label-free microscopy techniques have numerous advantages such as low phototoxicity, simple setup and no need for fluorophores or other contrast materials. Despite their advantages, most label-free techniques cannot visualize specific cellular compartments or the location of proteins and the image formation limits quantitative evaluation. Differential interference contrast (DIC) is a qualitative microscopy technique that shows the optical path length differences within a specimen. We propose a variational framework for DIC image reconstruction. The proposed method largely outperforms state-of-the-art methods on synthetic, artificial and real tests and turns DIC microscopy into an automated high-content imaging tool. Image sets and the source code of the examined algorithms are made publicly available.Peer reviewe

    Cell lines and clearing approaches : a single-cell level 3D light-sheet fluorescence microscopy dataset of multicellular spheroids

    Get PDF
    Nowadays, three dimensional (3D) cell cultures are widely used in the biological laboratories and several optical clearing approaches have been proposed to visualize individual cells in the deepest layers of cancer multicellular spheroids. However, defining the most appropriate clearing approach for the different cell lines is an open issue due to the lack of a gold standard quantitative metric. In this article, we describe and share a single-cell resolution 3D image dataset of human carcinoma spheroids imaged using a light-sheet fluorescence microscope. The dataset contains 90 multicellular cancer spheroids derived from 3 cell lines (i.e. T-47D, 5-8F, and Huh-7D12) and cleared with 5 different protocols, precisely Clear(T) , Clear(T2) , CUBIC, ScaleA2, and Sucrose. To evaluate image quality and light penetration depth of the cleared 3D samples, all the spheroids have been imaged under the same experimental conditions, labelling the nuclei with the DRAQ(5) stain and using a Leica SP8 Digital LightSheet microscope. The clearing quality of this dataset was annotated by 10 independent experts and thus allows microscopy users to qualitatively compare the effects of different optical clearing protocols on different cell lines. It is also an optimal testbed to quantitatively assess different com putational metrics evaluating the image quality in the deepest layers of the spheroids. (C) 2021 The Author(s). Published by Elsevier Inc.Peer reviewe

    SpheroidPicker for automated 3D cell culture manipulation using deep learning

    Get PDF
    Recent statistics report that more than 3.7 million new cases of cancer occur in Europe yearly, and the disease accounts for approximately 20% of all deaths. High-throughput screening of cancer cell cultures has dominated the search for novel, effective anticancer therapies in the past decades. Recently, functional assays with patient-derived ex vivo 3D cell culture have gained importance for drug discovery and precision medicine. We recently evaluated the major advancements and needs for the 3D cell culture screening, and concluded that strictly standardized and robust sample preparation is the most desired development. Here we propose an artificial intelligence-guided low-cost 3D cell culture delivery system. It consists of a light microscope, a micromanipulator, a syringe pump, and a controller computer. The system performs morphology-based feature analysis on spheroids and can select uniform sized or shaped spheroids to transfer them between various sample holders. It can select the samples from standard sample holders, including Petri dishes and microwell plates, and then transfer them to a variety of holders up to 384 well plates. The device performs reliable semi- and fully automated spheroid transfer. This results in highly controlled experimental conditions and eliminates non-trivial side effects of sample variability that is a key aspect towards next-generation precision medicine.Peer reviewe

    A quantitative metric for the comparative evaluation of optical clearing protocols for 3D multicellular spheroids

    Get PDF
    3D multicellular spheroids quickly emerged as in vitro models because they represent the in vivo tumor environment better than standard 2D cell cultures. However, with current microscopy technologies, it is difficult to visualize individual cells in the deeper layers of 3D samples mainly because of limited light penetration and scattering. To overcome this problem several optical clearing methods have been proposed but defining the most appropriate clearing approach is an open issue due to the lack of a gold standard metric. Here, we propose a guideline for 3D light microscopy imaging to achieve single-cell resolution. The guideline includes a validation experiment focusing on five optical clearing protocols. We review and compare seven quality metrics which quantitatively characterize the imaging quality of spheroids. As a test environment, we have created and shared a large 3D dataset including approximately hundred fluorescently stained and optically cleared spheroids. Based on the results we introduce the use of a novel quality metric as a promising method to serve as a gold standard, applicable to compare optical clearing protocols, and decide on the most suitable one for a particular experiment. (C) 2021 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology.Peer reviewe

    Correlative Fluorescence and Raman Microscopy to Define Mitotic Stages at the Single-Cell Level: Opportunities and Limitations in the AI Era

    Get PDF
    Nowadays, morphology and molecular analyses at the single-cell level have a fundamental role in understanding biology better. These methods are utilized for cell phenotyping and in-depth studies of cellular processes, such as mitosis. Fluorescence microscopy and optical spectroscopy techniques, including Raman micro-spectroscopy, allow researchers to examine biological samples at the single-cell level in a non-destructive manner. Fluorescence microscopy can give detailed morphological information about the localization of stained molecules, while Raman microscopy can produce label-free images at the subcellular level; thus, it can reveal the spatial distribution of molecular fingerprints, even in live samples. Accordingly, the combination of correlative fluorescence and Raman microscopy (CFRM) offers a unique approach for studying cellular stages at the singlecell level. However, subcellular spectral maps are complex and challenging to interpret. Artificial intelligence (AI) may serve as a valuable solution to characterize the molecular backgrounds of phenotypes and biological processes by finding the characteristic patterns in spectral maps. The major contributions of the manuscript are: (I) it gives a comprehensive review of the literature focusing on AI techniques in Raman-based cellular phenotyping; (II) via the presentation of a case study, a new neural network-based approach is described, and the opportunities and limitations of AI, specifically deep learning, are discussed regarding the analysis of Raman spectroscopy data to classify mitotic cellular stages based on their spectral maps

    Raman Spectral Signatures of Serum-Derived Extracellular Vesicle-Enriched Isolates May Support the Diagnosis of CNS Tumors

    Get PDF
    Investigating the molecular composition of small extracellular vesicles (sEVs) for tumor diagnostic purposes is becoming increasingly popular, especially for diseases for which diagnosis is challenging, such as central nervous system (CNS) malignancies. Thorough examination of the molecular content of sEVs by Raman spectroscopy is a promising but hitherto barely explored approach for these tumor types. We attempt to reveal the potential role of serum-derived sEVs in diagnosing CNS tumors through Raman spectroscopic analyses using a relevant number of clinical samples. A total of 138 serum samples were obtained from four patient groups (glioblastoma multiforme, non-small-cell lung cancer brain metastasis, meningioma and lumbar disc herniation as control). After isolation, characterization and Raman spectroscopic assessment of sEVs, the Principal Component Analysis–Support Vector Machine (PCA–SVM) algorithm was performed on the Raman spectra for pairwise classifications. Classification accuracy (CA), sensitivity, specificity and the Area Under the Curve (AUC) value derived from Receiver Operating Characteristic (ROC) analyses were used to evaluate the performance of classification. The groups compared were distinguishable with 82.9–92.5% CA, 80–95% sensitivity and 80–90% specificity. AUC scores in the range of 0.82–0.9 suggest excellent and outstanding classification performance. Our results support that Raman spectroscopic analysis of sEV-enriched isolates from serum is a promising method that could be further developed in order to be applicable in the diagnosis of CNS tumors

    nucleAIzer : A Parameter-free Deep Learning Framework for Nucleus Segmentation Using Image Style Transfer

    Get PDF
    Single-cell segmentation is typically a crucial task of image-based cellular analysis. We present nucleAIzer, a deep-learning approach aiming toward a truly general method for localizing 2D cell nuclei across a diverse range of assays and light microscopy modalities. We outperform the 739 methods submitted to the 2018 Data Science Bowl on images representing a variety of realistic conditions, some of which were not represented in the training data. The key to our approach is that during training nucleAIzer automatically adapts its nucleus-style model to unseen and unlabeled data using image style transfer to automatically generate augmented training samples. This allows the model to recognize nuclei in new and different experiments efficiently without requiring expert annotations, making deep learning for nucleus segmentation fairly simple and labor free for most biological light microscopy experiments. It can also be used online, integrated into CellProfiler and freely downloaded at www.nucleaizer.org. A record of this paper's transparent peer review process is included in the Supplemental Information.Peer reviewe

    Phenotypic Image Analysis Software Tools for Exploring and Understanding Big Image Data from Cell-Based Assays

    No full text
    Phenotypic image analysis is the task of recognizing variations in cell properties using microscopic image data. These variations, produced through a complex web of interactions between genes and the environment, may hold the key to uncover important biological phenomena or to understand the response to a drug candidate. Today, phenotypic analysis is rarely performed completely by hand. The abundance of high-dimensional image data produced by modern high-throughput microscopes necessitates computational solutions. Over the past decade, a number of software tools have been developed to address this need. They use statistical learning methods to infer relationships between a cell's phenotype and data from the image. In this review, we examine the strengths and weaknesses of non-commercial phenotypic image analysis software, cover recent developments in the field, identify challenges, and give a perspective on future possibilities.QC 20180720</p

    Automatic deep learning-driven label-free image-guided patch clamp system

    Get PDF
    Patch clamp recording of neurons is a labor-intensive and time-consuming procedure. Here, we demonstrate a tool that fully automatically performs electrophysiological recordings in label-free tissue slices. The automation covers the detection of cells in label-free images, calibration of the micropipette movement, approach to the cell with the pipette, formation of the whole-cell configuration, and recording. The cell detection is based on deep learning. The model is trained on a new image database of neurons in unlabeled brain tissue slices. The pipette tip detection and approaching phase use image analysis techniques for precise movements. High-quality measurements are performed on hundreds of human and rodent neurons. We also demonstrate that further molecular and anatomical analysis can be performed on the recorded cells. The software has a diary module that automatically logs patch clamp events. Our tool can multiply the number of daily measurements to help brain research. Patch clamp recording of neurons is slow and labor-intensive. Here the authors present a method for automated deep learning driven label-free image guided patch clamp physiology to perform measurements on hundreds of human and rodent neurons.Peer reviewe

    Super CUT, an unsupervised multimodal image registration with deep learning for biomedical microscopy

    No full text
    Numerous imaging techniques are available for observing and interrogating biological samples, and several of them can be used consecutively to enable correlative analysis of different image modalities with varying resolutions and the inclusion of structural or molecular information. Achieving accurate registration of multimodal images is essential for the correlative analysis process, but it remains a challenging computer vision task with no widely accepted solution. Moreover, supervised registration methods require annotated data produced by experts, which is limited. To address this challenge, we propose a general unsupervised pipeline for multimodal image registration using deep learning.We provide a comprehensive evaluation of the proposed pipeline versus the current state-of-The-Art image registration and style transfer methods on four types of biological problems utilizing different microscopy modalities. We found that style transfer of modality domains paired with fully unsupervised training leads to comparable image registration accuracy to supervised methods and, most importantly, does not require human intervention.Peer reviewe
    corecore