7 research outputs found

    Darolutamide does not interfere with OATP-mediated uptake of docetaxel

    Get PDF
    The addition of darolutamide, an androgen receptor signalling inhibitor, to therapy with docetaxel has recently been approved as a strategy to treat metastatic prostate cancer. OATP1B3 is an SLC transporter that is highly expressed in prostate cancer and is responsible for the accumulation of substrates, including docetaxel, into tumours. Given that darolutamide inhibits OATP1B3 in vitro, we sought to characterise the impact of darolutamide on docetaxel pharmacokinetics. We investigated the influence of darolutamide on OATP1B3 transport using in vitro and in vivo models. We assessed the impact of darolutamide on the tumour accumulation of docetaxel in a patient-derived xenograft (PDX) model and on an OATP1B biomarker in patients. Darolutamide inhibited OATP1B3 in vitro at concentrations higher than the reported Cmax. Consistent with these findings, in vivo studies revealed that darolutamide does not influence the pharmacokinetics of Oatp1b substrates, including docetaxel. Docetaxel accumulation in PDX tumours was not decreased in the presence of darolutamide. Metastatic prostate cancer patients had similar levels of OATP1B biomarkers, regardless of treatment with darolutamide. Consistent with a low potential to inhibit OATP1B3-mediated transport in vitro, darolutamide does not significantly impede the transport of Oatp1b substrates in vivo or in patients. Our findings support combined treatment with docetaxel and darolutamide, as no OATP1B3 transporter based drug–drug interaction was identified

    Darolutamide does not interfere with OATP-mediated uptake of docetaxel

    Get PDF
    The addition of darolutamide, an androgen receptor signalling inhibitor, to therapy with docetaxel has recently been approved as a strategy to treat metastatic prostate cancer. OATP1B3 is an SLC transporter that is highly expressed in prostate cancer and is responsible for the accumulation of substrates, including docetaxel, into tumours. Given that darolutamide inhibits OATP1B3 in vitro, we sought to characterise the impact of darolutamide on docetaxel pharmacokinetics. We investigated the influence of darolutamide on OATP1B3 transport using in vitro and in vivo models. We assessed the impact of darolutamide on the tumour accumulation of docetaxel in a patient-derived xenograft (PDX) model and on an OATP1B biomarker in patients. Darolutamide inhibited OATP1B3 in vitro at concentrations higher than the reported Cmax. Consistent with these findings, in vivo studies revealed that darolutamide does not influence the pharmacokinetics of Oatp1b substrates, including docetaxel. Docetaxel accumulation in PDX tumours was not decreased in the presence of darolutamide. Metastatic prostate cancer patients had similar levels of OATP1B biomarkers, regardless of treatment with darolutamide. Consistent with a low potential to inhibit OATP1B3-mediated transport in vitro, darolutamide does not significantly impede the transport of Oatp1b substrates in vivo or in patients. Our findings support combined treatment with docetaxel and darolutamide, as no OATP1B3 transporter based drug–drug interaction was identified

    Tamoxifen Dose De-Escalation:An Effective Strategy for Reducing Adverse Effects?

    Get PDF
    Tamoxifen, a cornerstone in the adjuvant treatment of estrogen receptor-positive breast cancer, significantly reduces breast cancer recurrence and breast cancer mortality; however, its standard adjuvant dose of 20 mg daily presents challenges due to a broad spectrum of adverse effects, contributing to high discontinuation rates. Dose reductions of tamoxifen might be an option to reduce treatment-related toxicity, but large randomized controlled trials investigating the tolerability and, more importantly, efficacy of low-dose tamoxifen in the adjuvant setting are lacking. We conducted an extensive literature search to explore evidence on the tolerability and clinical efficacy of reduced doses of tamoxifen. In this review, we discuss two important topics regarding low-dose tamoxifen: (1) the incidence of adverse effects and quality of life among women using low-dose tamoxifen; and (2) the clinical efficacy of low-dose tamoxifen examined in the preventive setting and evaluated through the measurement of several efficacy derivatives. Moreover, practical tools for tamoxifen dose reductions in the adjuvant setting are provided and further research to establish optimal dosing strategies for individual patients are discussed

    Phase I study of intraperitoneal irinotecan combined with palliative systemic chemotherapy in patients with colorectal peritoneal metastases

    No full text
    BackgroundPatients with colorectal peritoneal metastases who are not eligible for cytoreductive surgery (CRS) and hyperthermic intraperitoneal chemotherapy (HIPEC) owing to extensive peritoneal disease have a poor prognosis. It was hypothesized that these patients may benefit from the addition of intraperitoneal irinotecan to standard palliative systemic chemotherapy.MethodsThis was a classical 3 + 3 phase I dose-escalation trial in patients with colorectal peritoneal metastases who were not eligible for CRS-HIPEC. Intraperitoneal irinotecan was administered every 2 weeks, concomitantly with systemic FOLFOX (5-fluorouracil, folinic acid, oxaliplatin)–bevacizumab. The primary objective was to determine the maximum tolerated dose and dose-limiting toxicities. Secondary objectives were to elucidate the systemic and intraperitoneal pharmacokinetics, safety profile, and efficacy.ResultsEighteen patients were treated. No dose-limiting toxicities were observed with 50 mg (4 patients) and 75 mg (9 patients) intraperitoneal irinotecan. Two dose-limiting toxicities occurred with 100 mg irinotecan among five patients. The maximum tolerated dose of intraperitoneal irinotecan was established to be 75 mg, and it was well tolerated. Intraperitoneal exposure to SN-38 (active metabolite of irinotecan) was high compared with systemic exposure (median intraperitoneal area under the curve (AUC) to systemic AUC ratio 4.6). Thirteen patients had a partial radiological response and five had stable disease. Four patients showed a complete response during post-treatment diagnostic laparoscopy. Five patients underwent salvage resection or CRS-HIPEC. Median overall survival was 23.9 months.ConclusionAdministration of 75 mg intraperitoneal irinotecan concomitantly with systemic FOLFOX–bevacizumab was safe and well tolerated. Intraperitoneal SN-38 exposure was high and prolonged. As oncological outcomes were promising, intraperitoneal administration of irinotecan may be a good alternative to other, more invasive and costly treatment options. A phase II study is currently accruing
    corecore