39 research outputs found

    Cap-hardening parameters of Cam-clay model variations with soil moisture content and shape-restricted regression model

    Get PDF
    Modeling of soil elastic and permanent plastic volumetric strains (compaction) caused by loading from machinery vehicles using the modified Cam-clay soil constitutive model requires understanding the behaviors of compression and rebound parameters under unsaturated soil conditions.  Oedometer tests were conducted on a sandy loam, a loam, and a clay loam soil, all tropical soils, at three initial soil moisture contents and five maximum stress levels (50, 100, 200, 300 and 400 kPa).  The objectives were to investigate the effects of soil moisture content and maximum applied stress on the modified compression index (l*) and modified rebound index (k*) parameters of a modified Cam-clay soil model on the three soils and predict the compressibility indices using the shape-restricted modeling technique.  The clay loam soil showed higher compressibility at lower maximum stress levels and wet moisture conditions (-10 kPa soil moisture potential) but as the maximum applied stress increased (> 200 kPa), the modified compression index (l*) variations with soil moisture content were insignificant (p > 0.05).  A loam soil exhibited similar compression characteristics to a clay loam soil at 26.12% d.b. and 23.67% d.b., respectively.  For a sandy loam soil, both critical state parameters were less sensitive to the variations in soil moisture content.  The loam soil, which had an organic matter content of 6.33%, rebounded more than clay loam and sandy loam soils especially at higher applied stress values.  On average, the modified compression index (l*) was about 23 to 36 times the modified rebound index (k*).  Shape-restricted and quadratic model fittings are presented to explain the relationship between the critical state parameters and maximum applied stresses for each soil moisture content.  The model fitting results indicated that shape-restricted regression predicted the modified Cam-clay model parameters as a function of maximum applied stress (or pre-compression stress) at very low Average Squared Error Loss (ASEL) and did so better than parametric quadratic equations.   Keywords: modified compression index (l*), modified rebound index (k*), axial stress, uniaxial compression cyclic test, soil moisture, soil type

    The Interplay Between Attentional Strategies and Language Processing in High-functioning Adults with Autism Spectrum Disorder

    Get PDF
    This study examined the hypothesis of an atypical interaction between attention and language in ASD. A dual-task experiment with three conditions was designed, in which sentences were presented that contained errors requiring attentional focus either at (a) low level, or (b) high level, or (c) both levels of language. Speed and accuracy for error detection were measured from 16 high-functioning adults with ASD, and 16 matched controls. For controls, there was an attentional cost of dual level processing for low level performance but not for high level performance. For participants with ASD, there was an attentional cost both for low level and for high level performance. These results suggest a compensatory strategic use of attention during language processing in ASD

    Does Older Age Lead to Higher Risk for Neutropenia in Patients Treated with Paclitaxel?

    Get PDF
    Purpose: There is ongoing concern regarding increased toxicity from paclitaxel in elderly patients, particularly of severe neutropenia. Yet, data so far is controversial and this concern is not supported by a clinically relevant age-dependent difference in pharmacokinetics (PK) of paclitaxel. This study assessed whether age is associated with increased risk for paclitaxel-induced neutropenia. Methods: Paclitaxel plasma concentration-time data, pooled from multiple different studies, was combined with available respective neutrophil count data during the first treatment cycle. Paclitaxel pharmacokinetic-pharmacodynamic (PK-PD) d

    Efficiency enhancement in a lensed nanowire solar cell

    Get PDF
    We investigate microlenses that selectively focus the light on only a small fraction of all nanowires within an arrayed InP nanowire solar cell. The nano-concentration improves both the short-circuit current ( J s c ) and the open-circuit voltage ( V o c ) of the solar cell. For this purpose, polymethyl methacrylate microlenses with 6 μm diameter were randomly positioned on top of an arrayed nanowire solar cell with 500 nm pitch. The microlenses were fabricated by first patterning cylindrical micropillars, which were subsequently shaped as lenses by using a thermal reflow process. The quality of the microlenses was experimentally assessed by Fourier microscopy showing strong collimation of the emitted photoluminescence. By analyzing the slope of the integrated photoluminescence vs excitation density, we deduce a substantial enhancement of the external radiative efficiency of a nanowire array by adding microlenses. The enhanced radiative efficiency of the lensed nanowire array results in a clear enhancement of the open-circuit voltage for a subset of our solar cells. The microlenses finally also allow to increase the short-circuit current of our relatively short nanowires, providing a route to significantly reduce the amount of expensive semiconductor material.</p

    Proof of Stimulated Emission in Silicon-Germanium

    Full text link
    We have investigated a hexagonal Silicon-Germanium NW on top of a microstadium resonator using time resolved photoluminescence. Clear indications of fast stimulated emission from hex-SiGe are observed, showing that we approach lasing

    Holoprosencephaly and preaxial polydactyly associated with a 1.24 Mb duplication encompassing FBXW11 at 5q35.1

    Full text link
    Holoprosencephaly (HPE) is the most common developmental defect affecting the forebrain and midface in humans. The aetiology of HPE is highly heterogeneous and includes both environmental and genetic factors. Here we report on a boy with mild mental retardation, lobar HPE, epilepsy, mild pyramidal syndrome of the legs, ventricular septal defect, vesicoureteral reflux, preaxial polydactyly, and facial dysmorphisms. Genome-wide tiling path resolution array based comparative genomic hybridisation (array CGH) revealed a de novo copy-number gain at 5q35.1 of 1.24 Mb. Additional multiplex ligation-dependent probe amplification screening of a cohort of 31 patients with HPE for copy-number changes at the 5q35.1 locus did not reveal any additional genomic anomalies. This report defines a novel 1.24 Mb critical interval for HPE and preaxial polydactyly at 5q35.1. The duplicated region encompasses seven genes: RANBP17, TLX3, NPM1, FGF18, FBXW11, STK10, and DC-UbP. Since FBXW11 is relatively highly expressed in fetal brain and is directly involved in proteolytic processing of GLI3, we propose FBXW11 as the most likely candidate gene for the HPE and prexial polydactyly phenotype. Additional research is needed to further establish the role of genes from the 5q35.1 region in brain and limb development and to determine the prevalence of copy number gain in the 5q35.1 region among HPE patients
    corecore