9 research outputs found

    Combined assimilation of NOAA surface and MIPAS satellite observations to constrain the global budget of carbonyl sulfide

    Get PDF
    Carbonyl sulfide (COS), a trace gas in our atmosphere that leads to the formation of aerosols in the stratosphere, is largely taken up by terrestrial ecosystems. Quantifying the biosphere uptake of COS could provide a useful quantity to estimate gross primary productivity (GPP). Some COS sources and sinks still contain large uncertainties, and several top-down estimates of the COS budget point to an underestimation of sources, especially in the tropics. We extended the inverse model TM5-4DVAR to assimilate Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) satellite data, in addition to National Oceanic and Atmospheric Administration (NOAA) surface data as used in a previous study. To resolve possible discrepancies among the two observational data sets, a bias correction scheme is necessary and implemented. A set of inversions is presented that explores the influence of the different measurement streams and the settings of the prior fluxes. To evaluate the performance of the inverse system, the HIAPER Pole-to-Pole Observations (HIPPO) aircraft observations and NOAA airborne profiles are used. All inversions reduce the COS biosphere uptake from a prior value of 1053 GgS a1 to much smaller values, depending on the inversion settings. These large adjustments of the biosphere uptake often turn parts of Amazonia into a COS source. Only inversions that exclusively use MIPAS observations, or strongly reduce the prior errors on the biosphere flux, maintain the Amazon as a COS sink. Inclusion of MIPAS data in the inversion leads to a better separation of land and ocean fluxes. Over the Amazon, these inversions reduce the biosphere uptake from roughly 300 to 100 GgS a1, indicating a strongly overestimated prior uptake in this region. Although a recent study also reported reduced COS uptake over the Amazon, we emphasise that a careful construction of prior fluxes and their associated errors remains important. For instance, an inversion that gives large freedom to adjust the anthropogenic and ocean fluxes of CS2, an important COS precursor, also closes the budget satisfactorily with much smaller adjustments to the biosphere. We achieved better characterisation of biosphere prior and uncertainty, better characterisation of combined ocean and land fluxes, and better constraint of both by combining surface and satellite observations. We recommend more COS observations to characterise biosphere and ocean fluxes, especially over the data-poor tropics

    Code for "Influences of light and humidity on carbonyl sulfide-based estimates of photosynthesis"

    Full text link
    <p>Scripts for plotting of figures and calculating statistics for the work presented in "Influences of light and humidity on carbonyl sulfide-based estimates of photosynthesis"</p> <p>Scripts can be used in the free-software environment 'R'. </p

    Inverse modelling of carbonyl sulfide : Implementation, evaluation and implications for the global budget

    Full text link
    Carbonyl sulfide (COS) has the potential to be used as a climate diagnostic due to its close coupling to the biospheric uptake of CO2 and its role in the formation of stratospheric aerosol. The current understanding of the COS budget, however, lacks COS sources, which have previously been allocated to the tropical ocean. This paper presents a first attempt at global inverse modelling of COS within the 4-dimensional variational data-assimilation system of the TM5 chemistry transport model (TM5-4DVAR) and a comparison of the results with various COS observations. We focus on the global COS budget, including COS production from its precursors carbon disulfide (CS2) and dimethyl sulfide (DMS). To this end, we implemented COS uptake by soil and vegetation from an updated biosphere model (Simple Biosphere Model-SiB4). In the calculation of these fluxes, a fixed atmospheric mole fraction of 500 pmol mol-1 was assumed. We also used new inventories for anthropogenic and biomass burning emissions. The model framework is capable of closing the COS budget by optimizing for missing emissions using NOAA observations in the period 2000-2012. The addition of 432 Gg a-1 (as S equivalents) of COS is required to obtain a good fit with NOAA observations. This missing source shows few year-to-year variations but considerable seasonal variations. We found that the missing sources are likely located in the tropical regions, and an overestimated biospheric sink in the tropics cannot be ruled out due to missing observations in the tropical continental boundary layer. Moreover, high latitudes in the Northern Hemisphere require extra COS uptake or reduced emissions. HIPPO (HIAPER Pole-to-Pole Observations) aircraft observations, NOAA airborne profiles from an ongoing monitoring programme and several satellite data sources are used to evaluate the optimized model results. This evaluation indicates that COS mole fractions in the free troposphere remain underestimated after optimization. Assimilation of HIPPO observations slightly improves this model bias, which implies that additional observations are urgently required to constrain sources and sinks of COS. We finally find that the biosphere flux dependency on the surface COS mole fraction (which was not accounted for in this study) may substantially lower the fluxes of the SiB4 biosphere model over strong-uptake regions. Using COS mole fractions from our inversion, the prior biosphere flux reduces from 1053 to 851 Gg a-1, which is closer to 738 Gg a-1 as was found by Berry et al. (2013). In planned further studies we will implement this biosphere dependency and additionally assimilate satellite data with the aim of better separating the role of the oceans and the biosphere in the global COS budget..</p

    Near-real-time CO2fluxes from CarbonTracker Europe for high-resolution atmospheric modeling

    Get PDF
    We present the CarbonTracker Europe High-Resolution (CTE-HR) system that estimates carbon dioxide (CO2) exchange over Europe at high resolution (0.1 × 0.2° ) and in near real time (about 2 months' latency). It includes a dynamic anthropogenic emission model, which uses easily available statistics on economic activity, energy use, and weather to generate anthropogenic emissions with dynamic time profiles at high spatial and temporal resolution (0.1×0.2° hourly). Hourly net ecosystem productivity (NEP) calculated by the Simple Biosphere model Version 4 (SiB4) is driven by meteorology from the European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis 5th Generation (ERA5) dataset. This NEP is downscaled to 0.1×0.2° using the high-resolution Coordination of Information on the Environment (CORINE) land-cover map and combined with the Global Fire Assimilation System (GFAS) fire emissions to create terrestrial carbon fluxes. Ocean CO2 fluxes are included in our product, based on Jena CarboScope ocean CO2 fluxes, which are downscaled using wind speed and temperature. Jointly, these flux estimates enable modeling of atmospheric CO2 mole fractions over Europe. We assess the skill of the CTE-HR CO2 fluxes (a) to reproduce observed anomalies in biospheric fluxes and atmospheric CO2 mole fractions during the 2018 European drought, (b) to capture the reduction of anthropogenic emissions due to COVID-19 lockdowns, (c) to match mole fraction observations at Integrated Carbon Observation System (ICOS) sites across Europe after atmospheric transport with the Transport Model, version 5 (TM5) and the Stochastic Time-Inverted Lagrangian Transport (STILT), driven by ECMWF-IFS, and (d) to capture the magnitude and variability of measured CO2 fluxes in the city center of Amsterdam (the Netherlands). We show that CTE-HR fluxes reproduce large-scale flux anomalies reported in previous studies for both biospheric fluxes (drought of 2018) and anthropogenic emissions (COVID-19 pandemic in 2020). After applying transport of emitted CO2, the CTE-HR fluxes have lower median root mean square errors (RMSEs) relative to mole fraction observations than fluxes from a non-informed flux estimate, in which biosphere fluxes are scaled to match the global growth rate of CO2 (poor person's inversion). RMSEs are close to those of the reanalysis with the CTE data assimilation system. This is encouraging given that CTE-HR fluxes did not profit from the weekly assimilation of CO2 observations as in CTE. We furthermore compare CO2 concentration observations at the Dutch Lutjewad coastal tower with high-resolution STILT transport to show that the high-resolution fluxes manifest variability due to different emission sectors in summer and winter. Interestingly, in periods where synoptic-scale transport variability dominates CO2 concentration variations, the CTE-HR fluxes perform similarly to low-resolution fluxes (5-10× coarsened). The remaining 10 % of the simulated CO2 mole fraction differs by >2 ppm between the low-resolution and high-resolution flux representation and is clearly associated with coherent structures ("plumes") originating from emission hotspots such as power plants. We therefore note that the added resolution of our product will matter most for very specific locations and times when used for atmospheric CO2 modeling. Finally, in a densely populated region like the Amsterdam city center, our modeled fluxes underestimate the magnitude of measured eddy covariance fluxes but capture their substantial diurnal variations in summertime and wintertime well. We conclude that our product is a promising tool for modeling the European carbon budget at a high resolution in near real time. The fluxes are freely available from the ICOS Carbon Portal (CC-BY-4.0) to be used for near-real-time monitoring and modeling, for example, as an a priori flux product in a CO2 data assimilation system. The data are available at 10.18160/20Z1-AYJ2

    Spring enhancement and summer reduction in carbon uptake during the 2018 drought in northwestern Europe: Carbon uptake during 2018 Eur. drought

    Full text link
    We analysed gross primary productivity (GPP), total ecosystem respiration (TER) and the resulting net ecosystem exchange (NEE) of carbon dioxide (CO 2) by the terrestrial biosphere during the summer of 2018 through observed changes across the Integrated Carbon Observation System (ICOS) network, through biosphere and inverse modelling, and through remote sensing. Highly correlated yet independently-derived reductions in productivity from sun-induced fluorescence, vegetative near-infrared reflectance, and GPP simulated by the Simple Biosphere model version 4 (SiB4) suggest a 130-340 TgC GPP reduction in July-August-September (JAS) of 2018. This occurs over an area of 1.6 × 10 6 km 2 with anomalously low precipitation in northwestern and central Europe. In this drought-affected area, reduced GPP, TER, NEE and soil moisture at ICOS ecosystem sites are reproduced satisfactorily by the SiB4 model. We found that, in contrast to the preceding 5 years, low soil moisture is the main stress factor across the affected area. SiB4's NEE reduction by 57 TgC for JAS coincides with anomalously high atmospheric CO 2 observations in 2018, and this is closely matched by the NEE anomaly derived by CarbonTracker Europe (52 to 83 TgC). Increased NEE during the spring (May-June) of 2018 (SiB4 -52 TgC; CTE -46 to -55 TgC) largely offset this loss, as ecosystems took advantage of favourable growth conditions. This article is part of the theme issue 'Impacts of the 2018 severe drought and heatwave in Europe: from site to continental scale'

    Spring enhancement and summer reduction in carbon uptake during the 2018 drought in northwestern Europe

    Get PDF
    International audienceWe analysed gross primary productivity (GPP), total ecosystem respiration (TER) and the resulting net ecosystem exchange (NEE) of carbon dioxide (CO2) by the terrestrial biosphere during the summer of 2018 through observed changes across the Integrated Carbon Observation System (ICOS) network, through biosphere and inverse modelling, and through remote sensing. Highly correlated yet independently-derived reductions in productivity from sun-induced fluorescence, vegetative near-infrared reflectance, and GPP simulated by the Simple Biosphere model version 4 (SiB4) suggest a 130–340 TgC GPP reduction in July–August–September (JAS) of 2018. This occurs over an area of 1.6 × 106 km2 with anomalously low precipitation in northwestern and central Europe. In this drought-affected area, reduced GPP, TER, NEE and soil moisture at ICOS ecosystem sites are reproduced satisfactorily by the SiB4 model. We found that, in contrast to the preceding 5 years, low soil moisture is the main stress factor across the affected area. SiB4’s NEE reduction by 57 TgC for JAS coincides with anomalously high atmospheric CO2 observations in 2018, and this is closely matched by the NEE anomaly derived by CarbonTracker Europe (52 to 83 TgC). Increased NEE during the spring (May–June) of 2018 (SiB4 −52 TgC; CTE −46 to −55 TgC) largely offset this loss, as ecosystems took advantage of favourable growth conditions

    Evaluation of carbonyl sulfide biosphere exchange in the Simple Biosphere Model (SiB4)

    Full text link
    The uptake of carbonyl sulfide (COS) by terrestrial plants is linked to photosynthetic uptake of CO2 as these gases partly share the same uptake pathway. Applying COS as a photosynthesis tracer in models requires an accurate representation of biosphere COS fluxes, but these models have not been extensively evaluated against field observations of COS fluxes. In this paper, the COS flux as simulated by the Simple Biosphere Model, version 4 (SiB4), is updated with the latest mechanistic insights and evaluated with site observations from different biomes: one evergreen needleleaf forest, two deciduous broadleaf forests, three grasslands, and two crop fields spread over Europe and North America. We improved SiB4 in several ways to improve its representation of COS. To account for the effect of atmospheric COS mole fractions on COS biosphere uptake, we replaced the fixed atmospheric COS mole fraction boundary condition originally used in SiB4 with spatially and temporally varying COS mole fraction fields. Seasonal amplitudes of COS mole fractions are ∼50-200 ppt at the investigated sites with a minimum mole fraction in the late growing season. Incorporating seasonal variability into the model reduces COS uptake rates in the late growing season, allowing better agreement with observations. We also replaced the empirical soil COS uptake model in SiB4 with a mechanistic model that represents both uptake and production of COS in soils, which improves the match with observations over agricultural fields and fertilized grassland soils. The improved version of SiB4 was capable of simulating the diurnal and seasonal variation in COS fluxes in the boreal, temperate, and Mediterranean region. Nonetheless, the daytime vegetation COS flux is underestimated on average by 8±27 %, albeit with large variability across sites. On a global scale, our model modifications decreased the modeled COS terrestrial biosphere sink from 922 GgSyr-1 in the original SiB4 to 753 GgSyr-1 in the updated version. The largest decrease in fluxes was driven by lower atmospheric COS mole fractions over regions with high productivity, which highlights the importance of accounting for variations in atmospheric COS mole fractions. The change to a different soil model, on the other hand, had a relatively small effect on the global biosphere COS sink. The secondary role of the modeled soil component in the global COS budget supports the use of COS as a global photosynthesis tracer. A more accurate representation of COS uptake in SiB4 should allow for improved application of atmospheric COS as a tracer of local-to global-scale terrestrial photosynthesis
    corecore