82 research outputs found

    Slip-Flow and Heat Transfer of a Non-Newtonian Nanofluid in a Microtube

    Get PDF
    The slip-flow and heat transfer of a non-Newtonian nanofluid in a microtube is theoretically studied. The power-law rheology is adopted to describe the non-Newtonian characteristics of the flow, in which the fluid consistency coefficient and the flow behavior index depend on the nanoparticle volume fraction. The velocity profile, volumetric flow rate and local Nusselt number are calculated for different values of nanoparticle volume fraction and slip length. The results show that the influence of nanoparticle volume fraction on the flow of the nanofluid depends on the pressure gradient, which is quite different from that of the Newtonian nanofluid. Increase of the nanoparticle volume fraction has the effect to impede the flow at a small pressure gradient, but it changes to facilitate the flow when the pressure gradient is large enough. This remarkable phenomenon is observed when the tube radius shrinks to micrometer scale. On the other hand, we find that increase of the slip length always results in larger flow rate of the nanofluid. Furthermore, the heat transfer rate of the nanofluid in the microtube can be enhanced due to the non-Newtonian rheology and slip boundary effects. The thermally fully developed heat transfer rate under constant wall temperature and constant heat flux boundary conditions is also compared

    Nanofluids Research: Key Issues

    Get PDF
    Nanofluids are a new class of fluids engineered by dispersing nanometer-size structures (particles, fibers, tubes, droplets) in base fluids. The very essence of nanofluids research and development is to enhance fluid macroscopic and megascale properties such as thermal conductivity through manipulating microscopic physics (structures, properties and activities). Therefore, the success of nanofluid technology depends very much on how well we can address issues like effective means of microscale manipulation, interplays among physics at different scales and optimization of microscale physics for the optimal megascale properties. In this work, we take heat-conduction nanofluids as examples to review methodologies available to effectively tackle these key but difficult problems and identify the future research needs as well. The reviewed techniques include nanofluids synthesis through liquid-phase chemical reactions in continuous-flow microfluidic microreactors, scaling-up by the volume averaging and constructal design with the constructal theory. The identified areas of future research contain microfluidic nanofluids, thermal waves and constructal nanofluids

    Sirtuin 3, a New Target of PGC-1α, Plays an Important Role in the Suppression of ROS and Mitochondrial Biogenesis

    Get PDF
    Sirtuin 3 (SIRT3) is one of the seven mammalian sirtuins, which are homologs of the yeast Sir2 gene. SIRT3 is the only sirtuin with a reported association with the human life span. Peroxisome proliferator-activated receptor gamma coactivator-1alpha (PGC-1alpha) plays important roles in adaptive thermogenesis, gluconeogenesis, mitochondrial biogenesis and respiration. PGC-1alpha induces several key reactive oxygen species (ROS)-detoxifying enzymes, but the molecular mechanism underlying this is not well understood.Here we show that PGC-1alpha strongly stimulated mouse Sirt3 gene expression in muscle cells and hepatocytes. Knockdown of PGC-1alpha led to decreased Sirt3 gene expression. PGC-1alpha activated the mouse SIRT3 promoter, which was mediated by an estrogen-related receptor (ERR) binding element (ERRE) (-407/-399) mapped to the promoter region. Chromatin immunoprecipitation and electrophoretic mobility shift assays confirmed that ERRalpha bound to the identified ERRE and PGC-1alpha co-localized with ERRalpha in the mSirt3 promoter. Knockdown of ERRalpha reduced the induction of Sirt3 by PGC-1alpha in C(2)C(12) myotubes. Furthermore, Sirt3 was essential for PGC-1alpha-dependent induction of ROS-detoxifying enzymes and several components of the respiratory chain, including glutathione peroxidase-1, superoxide dismutase 2, ATP synthase 5c, and cytochrome c. Overexpression of SIRT3 or PGC-1alpha in C(2)C(12) myotubes decreased basal ROS level. In contrast, knockdown of mSIRT3 increased basal ROS level and blocked the inhibitory effect of PGC-1alpha on cellular ROS production. Finally, SIRT3 stimulated mitochondrial biogenesis, and SIRT3 knockdown decreased the stimulatory effect of PGC-1alpha on mitochondrial biogenesis in C(2)C(12) myotubes.Our results indicate that Sirt3 functions as a downstream target gene of PGC-1alpha and mediates the PGC-1alpha effects on cellular ROS production and mitochondrial biogenesis. Thus, SIRT3 integrates cellular energy metabolism and ROS generation. The elucidation of the molecular mechanisms of SIRT3 regulation and its physiological functions may provide a novel target for treating ROS-related disease

    Hepatitis B reactivation characterized by HBsAg negativity and anti-HbsAg antibodies persistence in haematopoietic stem cell transplanted patient after lamivudine withdrawal

    Full text link
    HBV reactivation is associated with high mortality rates in hematopoietic stem cell transplantation (HSCT) and prophylactic lamivudine (LMV) treatment is suggested to prevent this phenomenon. However, the duration of LMV treatment in HSCT patients is not fully defined and the time of immune recovery is considered the best parameter for a drug to be safely interrupted. In patients undergoing allogeneic HSCT, the time of immune recovery is not easy to define and may take years after transplantation and prolonged LMV treatments, which can lead to drug-resistant viral strains

    Gene Expression Programs of Mouse Endothelial Cells in Kidney Development and Disease

    Get PDF
    Endothelial cells are remarkably heterogeneous in both morphology and function, and they play critical roles in the formation of multiple organ systems. In addition endothelial cell dysfunction can contribute to disease processes, including diabetic nephropathy, which is a leading cause of end stage renal disease. In this report we define the comprehensive gene expression programs of multiple types of kidney endothelial cells, and analyze the differences that distinguish them. Endothelial cells were purified from Tie2-GFP mice by cell dissociation and fluorescent activated cell sorting. Microarrays were then used to provide a global, quantitative and sensitive measure of gene expression levels. We examined renal endothelial cells from the embryo and from the adult glomerulus, cortex and medulla compartments, as well as the glomerular endothelial cells of the db/db mutant mouse, which represents a model for human diabetic nephropathy. The results identified the growth factors, receptors and transcription factors expressed by these multiple endothelial cell types. Biological processes and molecular pathways were characterized in exquisite detail. Cell type specific gene expression patterns were defined, finding novel molecular markers and providing a better understanding of compartmental distinctions. Further, analysis of enriched, evolutionarily conserved transcription factor binding sites in the promoters of co-activated genes begins to define the genetic regulatory network of renal endothelial cell formation. Finally, the gene expression differences associated with diabetic nephropathy were defined, providing a global view of both the pathogenic and protective pathways activated. These studies provide a rich resource to facilitate further investigations of endothelial cell functions in kidney development, adult compartments, and disease

    An expanded evaluation of protein function prediction methods shows an improvement in accuracy

    Get PDF
    Background: A major bottleneck in our understanding of the molecular underpinnings of life is the assignment of function to proteins. While molecular experiments provide the most reliable annotation of proteins, their relatively low throughput and restricted purview have led to an increasing role for computational function prediction. However, assessing methods for protein function prediction and tracking progress in the field remain challenging.Results: We conducted the second critical assessment of functional annotation (CAFA), a timed challenge to assess computational methods that automatically assign protein function. We evaluated 126 methods from 56 research groups for their ability to predict biological functions using Gene Ontology and gene-disease associations using Human Phenotype Ontology on a set of 3681 proteins from 18 species. CAFA2 featured expanded analysis compared with CAFA1, with regards to data set size, variety, and assessment metrics. To review progress in the field, the analysis compared the best methods from CAFA1 to those of CAFA2.Conclusions: The top-performing methods in CAFA2 outperformed those from CAFA1. This increased accuracy can be attributed to a combination of the growing number of experimental annotations and improved methods for function prediction. The assessment also revealed that the definition of top-performing algorithms is ontology specific, that different performance metrics can be used to probe the nature of accurate predictions, and the relative diversity of predictions in the biological process and human phenotype ontologies. While there was methodological improvement between CAFA1 and CAFA2, the interpretation of results and usefulness of individual methods remain context-dependent

    Current Hepatitis B Screening Practices and Clinical Experience of Reactivation in Patients Undergoing Chemotherapy for Solid Tumors: A Nationwide Survey of Medical Oncologists

    No full text
    Universal screening for chronic hepatitis B virus before chemotherapy has been recommended by the Centers for Disease Control, but the majority of Australian medical oncologists have not adopted the practice

    Effect of temperature on the oxidation of Cu nanowires and development of an easy to produce, oxidationresistant transparent conducting electrode using a PEDOT:PSS coating

    Get PDF
    Oxidation can strongly influence the performance of Cu nanowires (CuNWs) by decreasing their conductivity. Here, we identify and investigate a way to prevent the oxidation process of CuNWs to maintain the high conducting performance of CuNWs as transparent electrodes. CuNWs were synthesised using an aqueous method. We prepared several temperature treatments (from 0–300 °C) to represent oxidation of CuNWs in different environments, to study the oxidation process and changes in morphology in detail. Depending on the temperature, smooth and uniform CuNWs exposed to oxidation produced rough Cu2O and CuO nanowires. We then suggest a method of protecting nanowires from oxidation, using the Mayer rod coating method to apply a layer of PEDOT:PSS to a transparent conducting film of CuNWs. The result indicates that this method of protection can protect the film, and maintain a stable, and constant resistance over of time, without effecting the excellent conductivity properties of pure CuNWs
    corecore