24 research outputs found

    Analysis of 14 BAC sequences from the Aedes aegypti genome: a benchmark for genome annotation and assembly

    Get PDF
    In order to provide a set of manually curated and annotated sequences from the Aedes aegypti genome, mapped BAC clones encompassing 1.57 Mb were sequenced, assembled and manually annotated using computational gene-finding, EST matches as well as comparative protein homology

    Draft Genome of the Filarial Nematode Parasite \u3ci\u3eBrugia malayi\u3c/i\u3e

    Get PDF
    Parasitic nematodes that cause elephantiasis and river blindness threaten hundreds of millions of people in the developing world. We have sequenced the ∼90 megabase (Mb) genome of the human filarial parasite Brugia malayi and predict ∼11,500 protein coding genes in 71 Mb of robustly assembled sequence. Comparative analysis with the free-living, model nematode Caenorhabditis elegans revealed that, despite these genes having maintained little conservation of local synteny during ∼350 million years of evolution, they largely remain in linkage on chromosomal units. More than 100 conserved operons were identified. Analysis of the predicted proteome provides evidence for adaptations of B. malayi to niches in its human and vector hosts and insights into the molecular basis of a mutualistic relationship with its Wolbachia endosymbiont. These findings offer a foundation for rational drug design

    Design and development of a scatterometer system for environmental monitoring

    No full text
    A ground-based C-band Scatterometer System has been constructed at the Universiti Multimedia Telekom, Malaysia. The system is a full polarimetric FM-CW radar which has the capability to determine the complete backscattering matrix of a natural target. The system is to be used to conduct in situ backscatter measurement on Earth terrain such as vegetation fields, forest and soil surfaces. In this paper, a summarized report on the design and development of the system is presented

    A comparison of autofocus algorithms for SAR imagery

    No full text
    A challenge in SAR system development involves compensatio n for nonlinear motion errors of the sensor platform. The uncompensated along-track motions can cause a severe loss of geometry accuracy and degrade SAR image quality. Autofocus techniques improve image focus by removing a large part of phase errors present after conventional motion compensation. It refers to the computer-automated error estimation and subsequent removal of the phase errors. Many autofocus algorithms have been proposed over the years, ranging from quantitative measurement of residual errors to qualitative visual comparison. However, due to the fact that different data sets and motion errors were employed, it is difficult to perform comparative studies on various algorithms. This paper compares and discusses some practical autofocus algorithms by using a common data set. Standard focal quality metrics are defined to measure how well an image is focused. Their implementation schemes and performance are evaluated in the presence of various phase errors, which include polynomial-like, high frequency sinusoidal, and random phase noise

    Calibration and field experiment of a C-band polarimetric scatterometer

    No full text
    Presents the evaluation results of a full polarimetric C-band scatterometer system that has been designed and constructed at the Multimedia University, Malaysia. The system was tested at a football field. A metal sphere was used as the calibration target. Backscattering matrices of an 8" trihedral corner reflector and a 4"×8" dihedral corner reflector were measured. The dihedral was rotated at different angles to provide different sets of polarimetric data. The results were compared with the theoretical values to verify the effectiveness of the calibration technique. The external calibration and internal calibration procedures as well as the approach used in measuring the relative phase response are discussed

    Development of a ground-based radar for scattering measurements

    No full text
    A ground-based C-band scatterometer system has been constructed at the Multimedia University, Malaysia. This is an inexpensive FM-CW radar that was efficiently constructed from a combination of commercially available components and in-house fabricated circuitry. The system has full polarimetric capability for determining the complete backscattering matrix of a natural target. It will be used to conduct in-situ backscatter measurements on Earth terrain, such as vegetation fields, forests, and soil surfaces. This paper presents the system design and the evaluation results of the scatterometer system. The system was tested at a football field. A metal sphere was used as the calibration target. The backscattering matrices of an 8" trihedral corner reflector and of a 4" x 8" dihedral corner reflector were measured. The dihedral was rotated at different angles to provide different sets of polarimetric data. The results were compared with the theoretical values to verify the effectiveness of the calibration technique. The external calibration and internal calibration procedures, as well as the approach used in measuring the relative phase response, are discussed

    Modified algorithm for real time SAR signal processing

    No full text
    The generation of the picture out of the SAR raw data is a computational intensive task. Both range compression and azimuth compression utilized Fast Fourier Transform (FFT) algorithms and Inverse Fast Fourier Transform (IFFT) in order to perform convolution with respective reference signal. Thus FFT and IFFT occupied about 70% of the total computation operation in SAR image formation. In this paper a modified algorithm based on conventional FFT is proposed to optimize the computation performance. It is shown that the proposed algorithm can essentially achieve better performance with minimum computational burden compare to conventional FFT

    A SAR Autofocus Algorithm Based on Particle Swarm Optimization

    No full text
    In synthetic aperture radar (SAR) processing, autofocus techniques are commonly used to improve SAR image quality by removing its residual phase errors after conventional motion compensation. This paper highlights a SAR autofocus algorithm based on particle swarm optimization (PSO). PSO is a population-based stochastic optimization technique based on the movement of swarms and inspired by social behavior of bird flocking or fish schooling. PSO has been successfully applied in many different application areas due to its robustness and simplicity [1–3]. This paper presents a novel approach to solve the low-frequency high-order polynomial and high-frequency sinusoidal phase errors. The power-to-spreading noise ratio (PSR) and image entropy (IE) are used as the focal quality indicator to search for optimum solution. The algorithm is tested on both simulated two-dimensional point target and real SAR raw data from RADARSAT-1. The results show significant improvement in SAR image focus quality after the distorted SAR signal was compensated by the proposed algorithm

    A Cancellation Network for Full-Duplex Front End Circuit

    No full text
    A circulator is needed in a C-band airborne synthetic aperture radar system which employs single antenna configuration. The circulator provides full-duplex capability to transmit high-power RF signal and receive the echo signal via the same antenna simultaneously. Commercially available circulators with moderate isolation are inadequate for this application. An innovative Cancellation Network (CN) has been designed to enhance the performance of the conventional circulator. This paper highlights the conceptual design and measurement results of the CN. An improvement of more than 27 dB has been achieve

    Autofocus algorithms performance evaluations using an integrated SAR product simulator and processor

    No full text
    The design and development of synthetic aperture radar (SAR) system for a particular application often requires redesign of software and hardware to optimize the system performance. In addition, evaluations of the performance of existing autofocus and image formation algorithms are required for the SAR system designers to select a most suitable algorithm for a given image quality requirements. This is a time-consuming taskwithout a reconfigurable and comprehensive software package. Thus, a comprehensive SAR integrated simulator and processor software is needed to aid the system designers in optimizing all the system parameters and performance. This paper presents an integrated SAR simulator and processor (iSARSIMP) software package and the performance of three selected SAR autofocus algorithms has been evaluated as examples to demonstrate the usefulness of the iSARSIMP for SAR system designers. In the performance evaluation, simulated and actual SAR raw data were used for further analysis and comparison of the three selected autofocus algorithms
    corecore