20 research outputs found

    Effects of High-Pressure Processing, UV-C Irradiation and Thermoultrasonication on Donor Human Milk Safety and Quality

    Get PDF
    Holder pasteurization (HoP) is the current recommended treatment for donor human milk. Although this method inactivates microbial contaminants, it also negatively affects various milk components. High-pressure processing (HPP, 400, 500, and 600 MPa), ultraviolet-C irradiation (UV-C, 2,430, 3,645, and 4,863 J/L) and thermoultrasonication (TUS, 1,080 and 1,620 kJ/L) were investigated as alternatives to thermal pasteurization (HoP). We assessed the effects of these methods on microbiological safety, and on concentration and functionality of immunoglobulin A, lactoferrin, lysozyme and bile salt-stimulated lipase, with LC-MS/MS-based proteomics and activity assays. HoP, HPP, TUS, and UV-C at 4863 J/L, achieved >5-log 10 microbial reduction. Native protein levels and functionality showed the highest reduction following HoP, while no significant reduction was found after less intense HPP and all UV-C treatments. Immunoglobulin A, lactoferrin, and lysozyme contents were also preserved after low intensity TUS, but bile salt-stimulated lipase activity was significantly reduced. This study demonstrated that HPP and UV-C may be considered as suitable alternatives to HoP, since they were able to ensure sufficient microbial inactivation while at the same time better preserving the bioactive components of donor human milk. In summary, our results provide valuable insights regarding the evaluation and selection of suitable processing methods for donor human milk treatment, which may replace HoP in the future

    Testing the effects of processing on donor human Milk: Analytical methods

    Get PDF
    Holder pasteurization is the current recommended method for donor human milk treatment. This method effectively eliminates most life-threatening contaminants in donor milk, but it also greatly reduces some of its biological properties. Consequently, there is a growing interest for developing novel processing methods that can ensure both microbial inactivation and a higher retention of the functional components of donor milk. Our aim was to offer a comprehensive overview of the analytical techniques available for the evaluation of such methods. To suggest an efficient workflow for the analysis of processed donor milk, a safety analytical panel as well as a nutritional value and functionality analytical panel are discussed, together with the principles, benefits, and drawbacks of the available techniques. Concluding on the suitability of a novel method requires a multifactorial approach which can be achieved by a combination of analytical targets and by using complementary assays to cross-validate the obtained results

    Changes in the milk serum proteome after thermal and non-thermal treatment

    No full text
    Milk serum contains many immune-active proteins that are sensitive to heat treatment. This study compared the effects of thermal (63 °C, 30 min; 72 °C, 15 s; 85 °C, 5 min) and non-thermal (ultraviolet-C, UV-C; thermo-ultrasonication, TUS) treatments on bovine milk serum proteins by using label-free LC-MS/MS-based proteomics. UV-C (4500 J/L) and TUS (60 W, 6 min) treatments achieved a 5log microbial reduction as determined by plate counting. Proteomics showed that e.g., complement proteins, xanthine dehydrogenase/oxidase, and fatty acid-binding protein decreased significantly (p˂0.05, |fold change|˃1) after thermal treatments, and almost no lactoferrin, immunoglobulin, and lactoperoxidase was retained after heating at 85 °C for 5 min, whereas these proteins were mostly retained after non-thermal treatments. Most of these heat-sensitive proteins were located in membrane and extracellular regions and were involved in cellular and metabolic processes, response to stimulus, binding, immune process and catalytic functions. Finally, part of the proteomics results were verified by ELISA. This study thus provided insights for the development of optimized thermal and novel non-thermal treatments for dairy processing. Industrial relevance: As alternatives to thermal processing technique, UV-C and ultrasonication showed a great potential in the processing of milk. This study not only showed that UV-C and ultrasonication were able to largely reduce the microbial load of raw milk, but also better retained the immune-related milk serum proteins than thermal processing, especially for the UV-C treatment. ELISA assays also demonstrated that the LC-MS/MS based proteomics technology used in this study was a robust method for quantifying damage to the milk serum proteome upon processing. Taken together, this study provided insights for development of optimized thermal and novel non-thermal techniques for dairy processing.</p

    Testing the effects of processing on donor human Milk: Analytical methods

    Get PDF
    Holder pasteurization is the current recommended method for donor human milk treatment. This method effectively eliminates most life-threatening contaminants in donor milk, but it also greatly reduces some of its biological properties. Consequently, there is a growing interest for developing novel processing methods that can ensure both microbial inactivation and a higher retention of the functional components of donor milk. Our aim was to offer a comprehensive overview of the analytical techniques available for the evaluation of such methods. To suggest an efficient workflow for the analysis of processed donor milk, a safety analytical panel as well as a nutritional value and functionality analytical panel are discussed, together with the principles, benefits, and drawbacks of the available techniques. Concluding on the suitability of a novel method requires a multifactorial approach which can be achieved by a combination of analytical targets and by using complementary assays to cross-validate the obtained results

    High-Temperature Short-Time Preserves Human Milk's Bioactive Proteins and Their Function Better Than Pasteurization Techniques With Long Processing Times

    Get PDF
    Donor human milk is generally processed by holder pasteurization (HoP) at 62. 5°C for 30 min. This temperature-time combination is sufficient for eliminating pathogens in donor milk, but also negatively affects several bioactive milk components. Long heating up times may further affect the bioactive properties of pasteurized milk. High-Temperature-Short-Time (HTST), a treatment with shorter processing times (72°C for 15 sec), was investigated as a suitable alternative to HoP. In addition, pasteurization methods that follow the same temperature regime but with varying heating up times were compared. Human milk samples from four different donors were combined into one pool, which was then used to perform all analyses. The effects of these methods on the levels and functionality of immunoglobulin A, lactoferrin, lysozyme and bile salt-stimulated lipase, were evaluated with LC-MS/MS-based proteomics and activity assays, while the pasteurization efficacy was evaluated with an alkaline phosphatase test. HoP, a treatment with long processing times, times, caused the highest reduction in all proteins studied (reduced by 50-98%). Compounds such as lactoferrin and bile salt-stimulated lipase that are more sensitive to heat treatments were better retained with HTST, but their levels and functionality were still significantly lower than those of untreated donor milk (52 and 81% reduction of lactoferrin and bile salt-stimulated lipase activity, respectively). Our findings showed that a treatment with considerably shorter processing times, such as HTST, may reduce the thermal damage caused to the bioactive proteins compared to HoP, without affecting pasteurization efficacy. Since the vast majority of the donor human milk banks that are currently operating on a global level apply HoP to donor milk, our findings may provide relevant information for the optimization of donor milk processing

    High-Temperature Short-Time Preserves Human Milk's Bioactive Proteins and Their Function Better Than Pasteurization Techniques With Long Processing Times

    No full text
    Donor human milk is generally processed by holder pasteurization (HoP) at 62. 5°C for 30 min. This temperature-time combination is sufficient for eliminating pathogens in donor milk, but also negatively affects several bioactive milk components. Long heating up times may further affect the bioactive properties of pasteurized milk. High-Temperature-Short-Time (HTST), a treatment with shorter processing times (72°C for 15 sec), was investigated as a suitable alternative to HoP. In addition, pasteurization methods that follow the same temperature regime but with varying heating up times were compared. Human milk samples from four different donors were combined into one pool, which was then used to perform all analyses. The effects of these methods on the levels and functionality of immunoglobulin A, lactoferrin, lysozyme and bile salt-stimulated lipase, were evaluated with LC-MS/MS-based proteomics and activity assays, while the pasteurization efficacy was evaluated with an alkaline phosphatase test. HoP, a treatment with long processing times, times, caused the highest reduction in all proteins studied (reduced by 50–98%). Compounds such as lactoferrin and bile salt-stimulated lipase that are more sensitive to heat treatments were better retained with HTST, but their levels and functionality were still significantly lower than those of untreated donor milk (52 and 81% reduction of lactoferrin and bile salt-stimulated lipase activity, respectively). Our findings showed that a treatment with considerably shorter processing times, such as HTST, may reduce the thermal damage caused to the bioactive proteins compared to HoP, without affecting pasteurization efficacy. Since the vast majority of the donor human milk banks that are currently operating on a global level apply HoP to donor milk, our findings may provide relevant information for the optimization of donor milk processing

    High-Temperature Short-Time Preserves Human Milk's Bioactive Proteins and Their Function Better Than Pasteurization Techniques With Long Processing Times

    Get PDF
    Donor human milk is generally processed by holder pasteurization (HoP) at 62. 5°C for 30 min. This temperature-time combination is sufficient for eliminating pathogens in donor milk, but also negatively affects several bioactive milk components. Long heating up times may further affect the bioactive properties of pasteurized milk. High-Temperature-Short-Time (HTST), a treatment with shorter processing times (72°C for 15 sec), was investigated as a suitable alternative to HoP. In addition, pasteurization methods that follow the same temperature regime but with varying heating up times were compared. Human milk samples from four different donors were combined into one pool, which was then used to perform all analyses. The effects of these methods on the levels and functionality of immunoglobulin A, lactoferrin, lysozyme and bile salt-stimulated lipase, were evaluated with LC-MS/MS-based proteomics and activity assays, while the pasteurization efficacy was evaluated with an alkaline phosphatase test. HoP, a treatment with long processing times, times, caused the highest reduction in all proteins studied (reduced by 50-98%). Compounds such as lactoferrin and bile salt-stimulated lipase that are more sensitive to heat treatments were better retained with HTST, but their levels and functionality were still significantly lower than those of untreated donor milk (52 and 81% reduction of lactoferrin and bile salt-stimulated lipase activity, respectively). Our findings showed that a treatment with considerably shorter processing times, such as HTST, may reduce the thermal damage caused to the bioactive proteins compared to HoP, without affecting pasteurization efficacy. Since the vast majority of the donor human milk banks that are currently operating on a global level apply HoP to donor milk, our findings may provide relevant information for the optimization of donor milk processing

    Thermoultrasonication, ultraviolet-C irradiation, and high-pressure processing : Novel techniques to preserve insulin in donor human milk

    No full text
    Background & aims: Donor human milk (DHM) is recommended as the first alternative for preterm infants if their mother's own milk is not available or if the quantity is not sufficient. The most commonly used technique to eliminate microbial contaminants in DHM is holder pasteurization (HoP). However, the heating process during HoP partially destroys milk bioactive factors such as insulin. Therefore, innovative techniques have been developed as alternatives to HoP. The objective of this study was to determine the effect of HoP, high-temperature–short-time (HTST), thermoultrasonication (TUS), ultraviolet-C irradiation (UV-C), and high-pressure processing (HPP) on the insulin concentration in DHM. Methods: Milk samples from 28 non-diabetic mothers were collected. The milk samples were aliquoted and either left untreated or treated with HoP (62.5 °C; 30 min), HTST (72 °C; 15 s), TUS (60 W; 6 min), UV-C (4863 J/L), or HPP (500 MPa; 5 min). Results: The mean insulin concentration in untreated milk was 79 ± 41 pmol/L. The mean insulin retention rate was 67% for HoP, 78% for HTST, 97% for TUS, 94% for UV-C, and 106% for HPP. The mean insulin concentration in milk treated with HoP was significantly lower compared to untreated milk (p = 0.01). Conclusion: TUS, UV-C, and HPP preserve insulin in DHM. The insulin concentration in DHM is affected to a larger extent by HoP than by HTST. These results indicate that TUS, UV-C, and HPP may serve as alternatives to HoP

    Testing the effects of processing on donor human Milk: Analytical methods

    No full text
    Holder pasteurization is the current recommended method for donor human milk treatment. This method effectively eliminates most life-threatening contaminants in donor milk, but it also greatly reduces some of its biological properties. Consequently, there is a growing interest for developing novel processing methods that can ensure both microbial inactivation and a higher retention of the functional components of donor milk. Our aim was to offer a comprehensive overview of the analytical techniques available for the evaluation of such methods. To suggest an efficient workflow for the analysis of processed donor milk, a safety analytical panel as well as a nutritional value and functionality analytical panel are discussed, together with the principles, benefits, and drawbacks of the available techniques. Concluding on the suitability of a novel method requires a multifactorial approach which can be achieved by a combination of analytical targets and by using complementary assays to cross-validate the obtained results
    corecore