27 research outputs found

    Are People Really Risk Seeking for Losses?

    Full text link

    Boron and Gadolinium Loaded fe3o4 Nanocarriers for Potential Application in Neutron Cancer Therapy

    Full text link
    In this article, a novel method of simultaneous carborane-and gadolinium-containing compounds as efficient agents for neutron capture therapy (NCT) delivery via magnetic nanocarriers is presented. The presence of both Gd and B increases the efficiency of NCT and using nanocarriers enhances selectivity. These factors make NCT not only efficient, but also safe. Superparamagnetic Fe3O4 nanoparticles were treated with silane and then the polyelectrolytic layer was formed for fur-ther immobilization of NCT agents. Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), energy dispersive X-ray (EDX), ultraviolet–visible (UV-Vis) and Mössbauer spectroscopies, dynamic light scattering (DLS), scanning electron microscopy (SEM), vibrating-sample magnetometry (VSM) were applied for the characterization of the chemical and element composition, structure, mor-phology and magnetic properties of nanocarriers. The cytotoxicity effect was evaluated on different cell lines: BxPC-3, PC-3 MCF-7, HepG2 and L929, human skin fibroblasts as normal cells. average size of nanoparticles is 110 nm; magnetization at 1T and coercivity is 43.1 emu/g and 8.1, respectively; the amount of B is 0.077 mg/g and the amount of Gd is 0.632 mg/g. Successful immobilization of NCT agents, their low cytotoxicity against normal cells and selective cytotoxicity against cancer cells as well as the superparamagnetic properties of nanocarriers were confirmed by analyses above. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.This study was funded by the Ministry of Education and Science of the Republic of Kazakhstan (grant No. AP08051954 "Synthesis and modification of magnetic nanoparticles for targeted delivery of drugs"), Joint Institute for Nuclear Research-Republic of Kazakhstan cooperation program (Order No. 391, 20 July 2020) and grant №M20MC-024 of The Belarusian Republican Foundation for Fundamental Research

    Two Kinds of Adaptation, Two Kinds of Relativity

    Get PDF
    This paper presents a review of adaptation concepts at the evolutionary, environmental, neural, sensory, mental and mathematical levels, including Helson’s and Parducci’s theories of perception and category judgments. Two kinds of adaptation can be clearly distinguished. The first, known as level adaptation, refers to the shift of the neutral perception level to the average stimulus value. It results in a single reference point and stimuli changes represented in absolute terms. This concept is employed by Prospect Theory, which assumes that gains and losses are perceived as monetary amounts. The second kind of adaptation refers to the adjustment of perception sensitivity to stimuli range. It results in two reference points (minimum and maximum stimulus) and stimuli changes perceived in relative terms. Both range adaptation and range relativity are well documented phenomena and have even been confirmed by the creators of Prospect Theory. This makes room for another decision making theory based on the range relativity approach. As shown by Kontek (2009), such a theory would not require the concept of probability weighting to describe lottery experiments or behavioral paradoxes

    The CPLEAR detector at CERN

    Get PDF
    The CPLEAR collaboration has constructed a detector at CERN for an extensive programme of CP-, T- and CPT-symmetry studies using K0{\rm K}^0 and Kˉ0\bar{\rm K}^0 produced by the annihilation of pˉ\bar{\rm p}'s in a hydrogen gas target. The K0{\rm K}^0 and Kˉ0\bar{\rm K}^0 are identified by their companion products of the annihilation K±π{\rm K}^{\pm} \pi^{\mp} which are tracked with multiwire proportional chambers, drift chambers and streamer tubes. Particle identification is carried out with a liquid Cherenkov detector for fast separation of pions and kaons and with scintillators which allow the measurement of time of flight and energy loss. Photons are measured with a lead/gas sampling electromagnetic calorimeter. The required antiproton annihilation modes are selected by fast online processors using the tracking chamber and particle identification information. All the detectors are mounted in a 0.44 T uniform field of an axial solenoid of diameter 2 m and length 3.6 m to form a magnetic spectrometer capable of full on-line reconstruction and selection of events. The design, operating parameters and performance of the sub-detectors are described.
    corecore