19 research outputs found

    Probing the Inner Jet of the Quasar PKS 1510-089 with Multi-waveband Monitoring during Strong Gamma-ray Activity

    Full text link
    We present results from monitoring the multi-waveband flux, linear polarization, and parsec-scale structure of the quasar PKS 1510-089, concentrating on eight major gamma-ray flares that occurred during the interval 2009.0-2009.5. The gamma-ray peaks were essentially simultaneous with maxima at optical wavelengths, although the flux ratio of the two wavebands varied by an order of magnitude. The optical polarization vector rotated by 720 degrees during a 5-day period encompassing six of these flares. This culminated in a very bright, roughly 1 day, optical and gamma-ray flare as a bright knot of emission passed through the highest-intensity, stationary feature (the "core") seen in 43 GHz Very Long Baseline Array images. The knot continued to propagate down the jet at an apparent speed of 22c and emit strongly at gamma-ray energies as a months-long X-ray/radio outburst intensified. We interpret these events as the result of the knot following a spiral path through a mainly toroidal magnetic field pattern in the acceleration and collimation zone of the jet, after which it passes through a standing shock in the 43 GHz core and then continues downstream. In this picture, the rapid gamma-ray flares result from scattering of infrared seed photons from a relatively slow sheath of the jet as well as from optical synchrotron radiation in the faster spine. The 2006-2009.7 radio and X-ray flux variations are correlated at very high significance; we conclude that the X-rays are mainly from inverse Compton scattering of infrared seed photons by 20-40 MeV electrons.Comment: 10 pages of text + 5 figures, to be published in Astrophysical Journal Letters in 201

    Flaring Behavior of the Quasar 3C~454.3 across the Electromagnetic Spectrum

    Full text link
    We analyze the behavior of the parsec-scale jet of the quasar 3C~454.3 during pronounced flaring activity in 2005-2008. Three major disturbances propagated down the jet along different trajectories with Lorentz factors Γ>\Gamma>10. The disturbances show a clear connection with millimeter-wave outbursts, in 2005 May/June, 2007 July, and 2007 December. High-amplitude optical events in the RR-band light curve precede peaks of the millimeter-wave outbursts by 15-50 days. Each optical outburst is accompanied by an increase in X-ray activity. We associate the optical outbursts with propagation of the superluminal knots and derive the location of sites of energy dissipation in the form of radiation. The most prominent and long-lasting of these, in 2005 May, occurred closer to the black hole, while the outbursts with a shorter duration in 2005 Autumn and in 2007 might be connected with the passage of a disturbance through the millimeter-wave core of the jet. The optical outbursts, which coincide with the passage of superluminal radio knots through the core, are accompanied by systematic rotation of the position angle of optical linear polarization. Such rotation appears to be a common feature during the early stages of flares in blazars. We find correlations between optical variations and those at X-ray and γ\gamma-ray energies. We conclude that the emergence of a superluminal knot from the core yields a series of optical and high-energy outbursts, and that the mm-wave core lies at the end of the jet's acceleration and collimation zone.Comment: 57 pages, 23 figures, 8 tables (submitted to ApJ

    A randomized, open-label, multicentre, phase 2/3 study to evaluate the safety and efficacy of lumiliximab in combination with fludarabine, cyclophosphamide and rituximab versus fludarabine, cyclophosphamide and rituximab alone in subjects with relapsed chronic lymphocytic leukaemia

    Get PDF

    Epitaxial Silver Films Morphology and Optical Properties Evolution over Two Years

    No full text
    Silver and gold are the most commonly used materials in optics and plasmonics. Silver has the lowest optical losses in the visible and near-infrared wavelength range, but it faces a serious problem—degradation over time. It has been repeatedly reported that the optical properties of silver thin films rapidly degrade when exposed to the atmosphere. This phenomenon was described by various mechanisms: rapid silver oxidation, sorption of sulfur or oxygen, formation of silver compounds with chlorine, sulfur, and oxygen. In this work, we systematically studied single-crystalline silver films from 25 to 70 nm thicknesses for almost two years. The surface morphology, crystalline structure and optical characteristics of the silver films were measured using spectroscopic ellipsometry, ultra-high-resolution scanning electron microscopy, and stylus profilometry under standard laboratory conditions. After 19 months, bulk structures appeared on the surface of thin films. These structures are associated with relaxation of internal stresses combined with dewetting. Single-crystalline silver films deposited using the single-crystalline continuous ultra-smooth, low-loss, low-cost (SCULL) technology with a thickness of 35–50 nm demonstrated the best stability in terms of degradation. We have shown that the number of defects (grain boundaries and joints of terraces) is one of the key factors that influence the degradation intensity of silver films

    Plantar Mechanical Stimulation Maintains Slow Myosin Expression in Disused Rat Soleus Muscle via NO-Dependent Signaling

    No full text
    It was observed that gravitational unloading during space missions and simulated microgravity in ground-based studies leads to both transformation of slow-twitch muscle fibers into fast-twitch fibers and to the elimination of support afferentation, leading to the “switching-off” of postural muscle motor units electrical activity. In recent years, plantar mechanical stimulation (PMS) has been found to maintain the neuromuscular activity of the hindlimb muscles. Nitric oxide (NO) was shown to be one of the mediators of muscle fiber activity, which can also promote slow-type myosin expression. We hypothesized that applying PMS during rat hindlimb unloading would lead to NO production upregulation and prevention of the unloading-induced slow-to-fast fiber-type shift in rat soleus muscles. To test this hypothesis, Wistar rats were hindlimb suspended and subjected to daily PMS, and one group of PMS-subjected animals was also treated with nitric oxide synthase inhibitor (L-NAME). We discovered that PMS led to sustained NO level in soleus muscles of the suspended animals, and NOS inhibitor administration blocked this effect, as well as the positive effects of PMS on myosin I and IIa mRNA transcription and slow-to-fast fiber-type ratio during rat hindlimb unloading. The results of the study indicate that NOS activity is necessary for the PMS-mediated prevention of slow-to-fast fiber-type shift and myosin I and IIa mRNA transcription decreases during rat hindlimb unloading

    Using HScore for Evaluation of Hemophagocytosis in Multisystem Inflammatory Syndrome Associated with COVID-19 in Children

    No full text
    Hemophagocytic syndrome is a key point in the pathogenesis of severe forms of multisystem inflammatory syndrome associated with COVID-19 in children (MIS-C). The factors associated with hemophagocytosis in patients with MIS-C were assessed in the present study of 94 boys and 64 girls ranging in age from 4 months to 17 years, each of whose HScore was calculated. In accordance with a previous analysis, patients with HScore ≤ 91 (n = 79) and HScore > 91 (n = 79) were compared. Patients with HScore > 91 had a higher frequency of symptoms such as cervical lymphadenopathy, dry cracked lips, bright mucous, erythema/swelling of hands and feet, peeling of fingers, edematous syndrome, hepatomegaly, splenomegaly, and hypotension/shock. They also had a higher erythrocyte sedimentation rate (ESR), C-reactive protein (CRP) and D-dimer levels, and a tendency to anemia, thrombocytopenia, and hypofibrinogenemia. They more often needed acetylsalicylic acid and biological treatment and were admitted to ICU in 70.9% of cases. Conclusion: The following signs of severe MIS-C were associated with HScore > 91: myocardial involvement, pericarditis, hypotension/shock, and ICU admission

    Determination of Risk Factors for Severe Life-Threatening Course of Multisystem Inflammatory Syndrome Associated with COVID-19 in Children

    No full text
    Multisystem inflammatory syndrome associated with COVID-19 in children (MIS-C) is a life-threatening condition that often requires intensive care unit (ICU) admission. The aim of this study was to determine risk factors for severe/life-threatening course of MIS-C. The study included 166 patients (99 boys, 67 girls) aged 4 months–17 years (median 8.2 years). The criterion of severity was the fact of ICU admission. To conduct a comparative analysis, MIS-C patients were divided into two groups: patients hospitalized in the ICU (n = 84, 50.6%) and those who did not need ICU admission (n = 82, 49.4%). Patients with a more severe course of MIS-C were significantly older. They had a higher frequency of signs such as rash, swelling, hepatomegaly, splenomegaly, and neurological and respiratory symptoms. Hypotension/shock and myocardial involvement were much more common in patients with severe MIS-C. These patients had a more significant increase in CRP, creatinine, troponin, and D-dimer levels. Additionally, the presence of macrophage activation syndrome was higher in patients admitted to the ICU. Conclusion: Nineteen predictors of severe course of MIS-C were found, out of which hepatomegaly, splenomegaly, D-dimer > 2568 ng/mL, troponin > 10 pg/mL were mainly associated with the probability of being classified as early predictors of severe MIS-C requiring ICU admission
    corecore