8 research outputs found
3D plasmonic crystal metamaterials for ultra-sensitive biosensing
International audienceWe explore the excitation of plasmons in 3D plasmon crystal metamaterials and report the observation of a delocalized plasmon mode, which provides extremely high spectral sensitivity (> 2600 nm per refractive index unit (RIU) change), outperforming all plasmonic counterparts excited in 2D nanoscale geometries, as well as a prominent phase-sensitive response (>3*10(4) deg. of phase per RIU). Combined with a large surface for bioimmobilization provided by the 3D matrix, the proposed sensor architecture promises a new important landmark in the advancement of plasmonic biosensing technology
3D Photonic Nanostructures via Diffusion-Assisted Direct fs Laser Writing
We present our research into the fabrication of fully three-dimensional metallic nanostructures using diffusion-assisted direct laser writing, a technique which employs quencher diffusion to fabricate structures with resolution beyond the diffraction limit. We have made dielectric 3D nanostructures by multiphoton polymerization using a metal-binding organic-inorganic hybrid material, and we covered them with silver using selective electroless plating. We have used this method to make spirals and woodpiles with 600 nm intralayer periodicity. The resulting photonic nanostructures have a smooth metallic surface and exhibit well-defined diffraction spectra, indicating good fabrication quality and internal periodicity. In addition, we have made dielectric woodpile structures decorated with gold nanoparticles. Our results show that diffusion-assisted direct laser writing and selective electroless plating can be combined to form a viable route for the fabrication of 3D dielectric and metallic photonic nanostructures
Self-Assembly of an Aspartate-Rich Sequence from the Adenovirus Fiber Shaft: Insights from Molecular Dynamics Simulations and Experiments
The
self-assembly of short peptides into fibrous nanostructures
(such as fibrils and tubes) has recently become the subject of intense
theoretical and experimental scrutiny, as such assemblies are promising
candidates for nanobiotechnological applications. The sequences of
natural fibrous proteins may provide a rich source of inspiration
for the design of such short self-assembling peptides. We describe
the self-assembly of the aspartate-rich undecapeptide (NH<sub>3</sub><sup>+</sup>-LSGSDSDTLTV-NH<sub>2</sub>), a sequence
derived from the shaft of the adenovirus fiber. We demonstrate that
the peptide assembles experimentally into amyloid-type fibrils according
to widely accepted diagnostic criteria. In addition, we investigate
an aqueous solution of undecapeptides by molecular dynamics simulations
with an implicit (GB) solvent model. The peptides are frequently arranged
in intermolecular β-sheets, in line with their amyloidogenic
propensity. On the basis of both experimental and theoretical insights,
we suggest possible structural models of the fibrils and their potential
use as scaffolds for templating of inorganic materials