427 research outputs found

    Photoacoustic generation of focused quasi-unipolar pressure pulses

    Get PDF
    The photoacoustic effect was employed to generate short-duration quasi-unipolar acoustic pressure pulses in both planar and spherically focused geometries. In the focal region, the temporal profile of a pressure pulse can be approximated by the first derivative of the temporal profile near the front transducer surface, with a time-averaged value equal to zero. This approximation agreed with experimental results acquired from photoacoustic transducers with both rigid and free boundaries. For a free boundary, the acoustic pressure in the focal region is equal to the sum of a positive pressure that follows the spatial profile of the optical energy deposition in the medium and a negative pressure that follows the temporal profile of the laser pulse

    High-resolution photoacoustic vascular imaging in vivo using a large-aperture acoustic lens

    Get PDF
    Reflection-mode photoacoustic microscopy with dark-field laser pulse illumination and high frequency ultrasonic detection is used to non-invasively image blood vessels in the skin in vivo. Dark-field illumination minimizes the interference caused by strong photoacoustic signals from superficial structures. A high numerical-aperture acoustic lens provides high lateral resolution, 45-120 micrometers in this system while a broadband ultrasonic detection system provides high axial resolution, estimated to be ~15-20 micrometers. The optical illumination and ultrasonic detection are in a coaxial confocal configuration for optimal image quality. The system is capable of imaging optical-absorption contrast at up to 3 mm depth in biological tissue

    Photoacoustic imaging of biological tissue with intensity-modulated continuous-wave laser

    Get PDF
    We build a photoacoustic imaging system using an intensity-modulated continuous-wave laser source, which is an inexpensive, compact, and durable 120-mW laser diode. The goal is to significantly reduce the costs and sizes of photoacoustic imaging systems. By using a bowl-shaped piezoelectric transducer, whose numerical aperture is 0.85 and resonance frequency is 2.45 MHz, we image biological tissues with a lateral resolution of 0.45 mm, an axial resolution of 1 mm, and an SNR as high as 43 dB

    Multifocal optical-resolution photoacoustic microscopy in vivo

    Get PDF
    Although ultrasound arrays have been exploited in photoacoustic imaging to improve imaging speed, ultrasound-array-based optical-resolution photoacoustic microscopy (OR-PAM) has never been achieved previously to our knowledge. Here we present our development of multifocal OR-PAM using a microlens array for optical illumination and an ultrasound array for photoacoustic detection. Our system is capable of imaging hemoglobin concentration and oxygenation in individual microvessels in vivo at high speed. Compared with a single focus, multiple foci reduce the scanning load and increase the imaging speed significantly. The current multifocal system can acquire 1000×500×200 voxels at ∼10 μm lateral resolution within 4 min

    Photoacoustic Doppler flow measurement in optically scattering media

    Get PDF
    We recently observed the photoacoustic Doppler effect from flowing small light-absorbing particles. Here, we apply the effect to measure blood-mimicking fluid flow in an optically scattering medium. The light scattering in the medium decreases the amplitude of the photoacoustic Doppler signal but does not affect either the magnitude or the directional discrimination of the photoacoustic Doppler shift. This technology may hold promise for a new Doppler method for measuring blood flow in microcirculation with high sensitivity

    Subwavelength-resolution photoacoustic microscopy for label-free detection of optical absorption in vivo

    Get PDF
    Mainstream optical microscopy technologies normally detect fluorescence or scattering, which may require undesirable labeling, but cannot directly sense optical absorption, which provides essential biological functional information. Here we reported in vivo and label-free subwavelength-resolution photoacoustic microscopy (SW-PAM) by using a waterimmersion optical objective with a 1.23 NA. Capable of detecting nonfluorescent endogenous pigments, SW-PAM provides exquisitely high optical-absorption contrast. And, as a result of background-free detection, the sensitivity of SW-PAM to optical absorption reaches 100%. SW-PAM was demonstrated with wide-field optical microscopy by imaging gold nanospheres, ex vivo cells, and in vivo vasculature and melanoma. It was shown that SW-PAM has approached the ultimate diffraction-limited optical resolution-220 nm resolution at 532 nm wavelength. Subcellular organelles, such as melanosomes, can be resolved by SW-PAM. Vasculature and early-stage melanoma were imaged with 21:1 and 34:1 contrasts, respectively, without labeling. For all these applications, SW-PAM has contrasts orders of magnitude higher than wide-field optical microscopy. Therefore, SW-PAM is expected to join the mainstream microscopy technologies

    Single-cell label-free photoacoustic flowoxigraphy in vivo

    Get PDF
    Label-free functional imaging of single red blood cells (RBCs) in vivo holds the key to uncovering the fundamental mechanism of oxygen metabolism in cells. To this end, we developed single-RBC photoacoustic flowoxigraphy (FOG), which can image oxygen delivery from single flowing RBCs in vivo with millisecond-scale temporal resolution and micrometer-scale spatial resolution. Using intrinsic optical absorption contrast from oxyhemoglobin (HbO_2) and deoxyhemoglobin (HbR), FOG allows label-free imaging. Multiple single-RBC functional parameters, including total hemoglobin concentration (C_(Hb)), oxygen saturation (sO_2), sO_2 gradient (∇SO_2), flow speed (v_f), and oxygen release rate (rO_2), have been quantified simultaneously in real time. Working in reflection instead of transmission mode, the system allows minimally invasive imaging at more anatomical sites. We showed the capability to measure relationships among sO_2, ∇SO_2, v_f, and rO_2 in a living mouse brain. We also demonstrated that single-RBC oxygen delivery was modulated by changing either the inhalation gas or blood glucose. Furthermore, we showed that the coupling between neural activity and oxygen delivery could be imaged at the single-RBC level in the brain. The single-RBC functional imaging capability of FOG enables numerous biomedical studies and clinical applications

    Photoacoustic microscopy with submicron resolution

    Get PDF
    We show that it is possible to obtain high optical contrast photoacoustic images of tissue with 0.55 μm transverse resolution. To achieve high sensitivity, we used a high NA (0.85), 125 MHz spherically focused ultrasonic transducer in a confocal arrangement with a high resolution optical objective (NA=0.6). Laser pulses of a few nJ in pulse energy with durations of 1.5 ns at a 20 KHz pulse repetition rate were used to generate photoacoustic waves. Although the penetration depth is limited to hundreds of microns by both optical scattering and ultrasonic absorption, the developed technique can compete with optical microscopy, for example, in quantitative spectral measurements, in microcirculation research, or in nanoparticle detection

    DMD-encoded spectral photoacoustic microscopy

    Get PDF
    We present a spectrally encoded photoacoustic microscope based on a digital mirror device (DMD). It enables fast spatially resolved spectral measurements of optical absorption. The imaging system can quickly tune the laser illumination spectrum at the laser pulse repetition rate of 2 kHz. To demonstrate multi-wavelength absorption measurements, we imaged optically absorbing solution phantom. Compared with spectral scanning, spectral encoding recovers chromophore absorption spectra with improved accuracy by enhancing photoacoustic amplitude signal-to-noise ratio

    In vivo dark-field reflection-mode photoacoustic microscopy

    Get PDF
    Reflection-mode photoacoustic microscopy with dark-field laser pulse illumination and high-numerical-aperture ultrasonic detection is designed and implemented in noninvasively imaged blood vessels in the skin in vivo. Dark-field optical illumination minimizes the interference caused by strong photoacoustic signals from superficial structures. A high-numerical-aperture acoustic lens provides high lateral resolution, 45–120μm in this system. A broadband ultrasonic detection system provides high axial resolution, estimated to be ∼15μm. The optical illumination and ultrasonic detection are in a coaxial confocal configuration for optimal image quality. The system is capable of imaging optical-absorption contrast as deep as 3mm in biological tissue
    • …
    corecore