22 research outputs found

    Facilitated diffusion of DNA-binding proteins

    Get PDF
    The diffusion-controlled limit of reaction times for site-specific DNA-binding proteins is derived from first principles. We follow the generally accepted concept that a protein propagates via two competitive modes, a three-dimensional diffusion in space and a one-dimensional sliding along the DNA. However, our theoretical treatment of the problem is new. The accuracy of our analytical model is verified by numerical simulations. The results confirm that the unspecific binding of protein to DNA, combined with sliding, is capable to reduce the reaction times significantly.Comment: 4 pages, 2 figures Nov 22 2005 - accepted for PR

    Calculation of the "absolute" free energy of a ß-hairpin in an all-atom force field

    Get PDF

    Facilitated diffusion of DNA-binding proteins: Simulation of large systems

    Full text link
    The recently introduced method of excess collisions (MEC) is modified to estimate diffusion-controlled reaction times inside systems of arbitrary size. The resulting MEC-E equations contain a set of empirical parameters, which have to be calibrated in numerical simulations inside a test system of moderate size. Once this is done, reaction times of systems of arbitrary dimensions are derived by extrapolation, with an accuracy of 10 to 15 percent. The achieved speed up, when compared to explicit simulations of the reaction process, is increasing proportional to the extrapolated volume of the cell.Comment: 8 pages, 4 figures, submitted to J. Chem. Phy

    Filamentous Biopolymers on Surfaces: Atomic Force Microscopy Images Compared with Brownian Dynamics Simulation of Filament Deposition

    Get PDF
    Nanomechanical properties of filamentous biopolymers, such as the persistence length, may be determined from two-dimensional images of molecules immobilized on surfaces. For a single filament in solution, two principal adsorption scenarios are possible. Both scenarios depend primarly on the interaction strength between the filament and the support: i) For interactions in the range of the thermal energy, the filament can freely equilibrate on the surface during adsorption; ii) For interactions much stronger than the thermal energy, the filament will be captured by the surface without having equilibrated. Such a ‘trapping’ mechanism leads to more condensed filament images and hence to a smaller value for the apparent persistence length. To understand the capture mechanism in more detail we have performed Brownian dynamics simulations of relatively short filaments by taking the two extreme scenarios into account. We then compared these ‘ideal’ adsorption scenarios with observed images of immobilized vimentin intermediate filaments on different surfaces. We found a good agreement between the contours of the deposited vimentin filaments on mica (‘ideal’ trapping) and on glass (‘ideal’ equilibrated) with our simulations. Based on these data, we have developed a strategy to reliably extract the persistence length of short worm-like chain fragments or network forming filaments with unknown polymer-surface interactions

    Modeling Dynamic Light Scattering of Supercoiled DNA

    Full text link

    Salt-dependant DNA superhelix diameter studied by small angle neutron scattering measurements and Monte Carlo simulations

    Full text link
    ABSTRACT Using small angle neutron scattering we have measured the static form factor of two different superhelical DNAs, p1868 (1868 bp) and pUC18 (2686 bp), in dilute aqueous solution at salt concentrations between 0 and 1.5 M Na � in 10 mM Tris at 0 % and 100 % D 2O. For both DNA molecules, the theoretical static form factor was also calculated from an ensemble of Monte Carlo configurations generated by a previously described model. Simulated and measured form factors of both DNAs showed the same behavior between 10 and 100 mM salt concentration: An undulation in the scattering curve at a momentum transfer q � 0.5 nm �1 present at lower concentration disappears above 100 mM. The position of the undulation corresponds to a distance of �10–20 nm. This indicated a change in the DNA superhelix diameter, as the undulation is not present in the scattering curve of the relaxed DNA. From the measured scattering curves of superhelical DNA we estimated the superhelix diameter as a function of Na � concentration by a quantitative comparison with the scattering curve of relaxed DNA. The ratio of the scattering curves of superhelical and relaxed DNA is very similar to the form factor of a pair of point scatterers. We concluded that the distance of this pair corresponds to the interstrand separation in the superhelix. The computed superhelix diameter of 16.0 � 0.9 nm at 10 mM decreased to 9.0 � 0.7 nm at 100 mM salt concentration. Measured and simulated scattering curves agreed almost quantitatively, therefore we also calculated the superhelix diameter from the simulated conformations. It decreased from 18.0 � 1.5 nm at 10 mM to 9.4 � 1.5 nm at 100 mM salt concentration. This value did not significantly change to lower values at higher Na � concentration, in agreement wit
    corecore