9 research outputs found

    Anomalous relaxation and self-organization in non-equilibrium processes

    Full text link
    We study thermal relaxation in ordered arrays of coupled nonlinear elements with external driving. We find, that our model exhibits dynamic self-organization manifested in a universal stretched-exponential form of relaxation. We identify two types of self-organization, cooperative and anti-cooperative, which lead to fast and slow relaxation, respectively. We give a qualitative explanation for the behavior of the stretched exponent in different parameter ranges. We emphasize that this is a system exhibiting stretched-exponential relaxation without explicit disorder or frustration.Comment: submitted to PR

    Tunable Pinning of Burst-Waves in Extended Systems with Discrete Sources

    Full text link
    We study the dynamics of waves in a system of diffusively coupled discrete nonlinear sources. We show that the system exhibits burst waves which are periodic in a traveling-wave reference frame. We demonstrate that the burst waves are pinned if the diffusive coupling is below a critical value. When the coupling crosses the critical value the system undergoes a depinning instability via a saddle-node bifurcation, and the wave begins to move. We obtain the universal scaling for the mean wave velocity just above threshold.Comment: 4 pages, 5 figures, revte

    Universal Scaling of Wave Propagation Failure in Arrays of Coupled Nonlinear Cells

    Full text link
    We study the onset of the propagation failure of wave fronts in systems of coupled cells. We introduce a new method to analyze the scaling of the critical external field at which fronts cease to propagate, as a function of intercellular coupling. We find the universal scaling of the field throughout the range of couplings, and show that the field becomes exponentially small for large couplings. Our method is generic and applicable to a wide class of cellular dynamics in chemical, biological, and engineering systems. We confirm our results by direct numerical simulations.Comment: 4 pages, 3 figures, RevTe
    corecore