4 research outputs found

    Correlation of highly dispersed aerosol particles and aeroions, formed by sylvinite surfaces and materials

    Get PDF
    The use of materials based on natural potassium salts is a known way to create a high-quality, up to healing, indoor air which is modified due to the effect of sylvinite, carnallite and halite aerosol particles. Facing or decorating protective surfaces of walls, floor or ceiling in special ground facilities – speleoclimatic chambers – can enrich the indoor air with a highly dispersed salt aerosol and aeroions of light mobility group. It is proposed to look over the interrelation between distribution of aerosol particles and concentration of light aeroions in sylvinite speleoclimatic chambers, considering the ionization and recombination equation of formation and disappearance of light aeroions. By extrapolation the main parameters of the highly dispersed salt aerosol were determined for size less than 0.3 microns based on the experimentally determined parameters of aerosol particles distribution by size (greater than 0.3 microns) taking into account possible solutions of the aeroionic balance equation and applying the superposition model of several logarithmically normal distributions. On example of Verkhnekamskoie potash deposit the article shows the main parameters of aerosol particles` size distribution in sylvinite speleoclimatic chambers with surfaces of different constructions made of sawn natural sylvinite blocks, panels and molded salt tiles with a high content of potassium chloride, a component of potash salts. Study results confirm high efficiency of sylvinite building materials application to create a high-quality medical or wellness air environment saturated with highly dispersed salt aerosol, and allow to optimally select special constructive and decorative materials on the basis of sylvinite, depending on required parameters of the aerosol distribution in order to create a high-quality indoor air

    Use of sylvinite dedicated to Verkhnekamskoe field of potash and magnesium to increase quality and ionization of air environment

    Get PDF
    Urbanization of territories and growth of man-made air pollution require creating and widely implementing means, methods and materials to increase air quality of indoor premises through ionization. Increase of air quality of indoor premises is on the front burner which is caused by following reasons of natural air deionization: aerosol and gas pollution and air cleaning from its pollution. Wherein, use of conventional methods of electrostatic generation of air ions is restricted by its side effects. This paper reviews new prospecting methods to create qualitative and treatment air environment inside premises through its air ionization by interaction of air and natural sylvinite, containing silvite (potassium chloride). The paper presents generalized experimental data including air ionization of premises for treatment and health-recovering purposes that represent sylvinite speleoclimatic chambers with surfaces of different design made of either sawn sylvinite blocks of natural sylvinite or pressed salt tile with high concentration of potassium chloride etc. Air ionization occurs primarily due to beta radiation of natural radioactive isotope potassium-40. Concentration of air ions of positive and negative polarity and different mobility (light, moderate and heavy air ions) are studied. Spectrum distribution of air ions of light mobility group of negative polarity are analyzed in details. In the range of mobility more than 2 cm2В–1sec–1 unipolarity coefficient is always less than 1. In the range of 1–2 cm2В–1sec–1 unipolarity coefficient is larger than 1. Obtained results prove high efficiency of application of sylvinite construction materials to create high-quality, treatment or health-recovering air environment, allow to select special construction and decoration materials based on sylvinite depending on required parameters of air ion composition it order to create high-quality air in the premises

    Assessment of fire safety of evacuation routes in industrial premises

    Get PDF
    The paper presents results of the development of new scientific and methodological principles for assessing the fire safety of industrial premises evacuation routes. The basis of these principles is the scientific methodology for managing industrial safety, developed at the department of life safety at the Perm National Research Polytechnic University. Following is discussed in the paper: 1) method of modelling scenarios for fire break-out and development based on Ishikawa diagram, 2) mathematical model describing the stepwise process of fire break-out and development in accordance with diagram topology, 3) indicator of fire safety of evacuation routes, 4) model for estimating the probability of evacuation of people along through the evacuation routes, 5) model for estimating the probability of evacuation from the premises. The developments mentioned above took into account problematic issues related to the behavior of people during a fire (operational actions to turn off equipment or stop the process, speed of human response to fire signals and decision time), movement of people during evacuation inside confined or limited spaces (mines, containers, wells, vessels etc.), remoteness of workplaces from evacuation routes (scaffolding, crane tracks, work at height etc.), reliability of evacuation warning and control systems, absence of a clear algorithm for constructing fire scenarios. The areas of scientific research application are identified. A method for assessing the safety of evacuation routes in relation to fire extinguishing substances of automatic fire extinguishing units that pose a danger to human health is considered. Examples of the application of scientific developments in the assessment of evacuation routes fire safety and modelling a fire scenario at a specific production facility are given

    Physiological aspects of high-tech refinery operators work

    Get PDF
    Work at high-tech refineries is characterized by such the main factors as complexity of workers' duties (pace, nature of mental tasks), intense static and dynamic loads, irrational work regime. It is known that the decrease in work efficiency is the result of the influence of factors of the labor process (the monotony of external stimuli, long stay in the required working position, restriction of physical activity, relative isolation and sensory insufficiency). That is caused by the development of inhibition in the cerebral cortex and weakening of excitatory process. Arrival of the signal expected is associated with the transition to intensive activities at the control panel according to a specific algorithm or the operator’s labor intensity in the long standby mode. The paper presents results of studies of the basic physiological parameters of the respiratory and cardiovascular systems of operators during 12-hour work shifts. The assessment confirmed the high “physiological cost” of the operators' work activity, myocardial hypoxia observed in the work shift process, reduced mental performance, development of fatigue, therefore, conditions for reducing the reaction rate and possible error actions of the staff in this work process organization. In addition, the probability of provoking negative changes in the health of operators and possibility of developing a number of cardiovascular diseases, including those caused by production activities, have been confirmed. There is a need to develop individual strategies to adapt to the labor process, taking into account age and professional features of the activity, as well as the development of rational shift regimes of work and rest for working on 12-hour work schedules taking into account the regular changes in the phase character of working capacity in order to optimize conditions and increase productivity
    corecore