559 research outputs found

    Gravitational radiation from a bulk flow model

    Full text link
    We perform simulations in a simple model that aims to mimic the hydrodynamic evolution of a relativistic fluid during a cosmological first-order phase transitions. The observable we are concerned with is hereby the spectrum of gravitational radiation produced by colliding fluid shells. We present simple parameterizations of our results as functions of the wall velocity, the duration of the phase transition and the latent heat. We also improve on previous results in the envelope approximation and compare with hydrodynamic simulations.Comment: 19 pages, 7 figures, matches published versio

    Baryogenesis in the MSSM, nMSSM and NMSSM

    Get PDF
    We compare electroweak baryogenesis in the MSSM, nMSSM and NMSSM. We comment on the different sources of CP violation, the phase transition and constraints from EDM measurements.Comment: 6 pages, 4 figures. To appear in the proceedings of the 7th Conference on Strong and Electroweak Matter (SEWM06), Brookhaven National Laboratory, May 10-13, 200

    Resummation of Goldstone Infrared Divergences: A Proof to All Orders

    Full text link
    The perturbative effective potential calculated in Landau gauge suffers from infrared problems due to Goldstone boson loops. These divergences are spurious and can be removed by a resummation procedure that amounts to a shift of the mass of soft Goldstones. We prove this to all loops using an effective theory approach, providing a compact recipe for the shift of the Goldstone mass that relies on the use of the method of regions to split soft and hard Goldstone contributions.Comment: 30 pages, 3 figure

    CP-violation for Electroweak Baryogenesis from Dynamical CKM Matrix

    Full text link
    We show that the CKM matrix can be the source of CP violation for electroweak baryogenesis if Yukawa couplings vary at the same time as the Higgs acquires its vacuum expectation value. This offers new avenues for explaining the baryon asymmetry of the universe. These ideas apply if the mechanism explaining the flavour structure of the Standard Model is connected to electroweak symmetry breaking. We compute the resulting baryon asymmetry for various low-scale flavour models and different configurations of the Yukawa coupling variation across the bubble wall, and show that it can naturally be of the right order.Comment: 43 pages, 17 figures; v2: replaced mismatched plot in Figure 8 and corrected a typo in the caption; v3: JCAP published version, clarifications added, results unchange

    Are CP Violating Effects in the Standard Model Really Tiny?

    Full text link
    We derive an effective action of the bosonic sector of the Standard Model by integrating out the fermionic degrees of freedom in the worldline approach. The CP violation due to the complex phase in the CKM matrix gives rise to CP-violating operators in the effective action. We calculate the prefactor of the appropriate next-to-leading order operators and give general estimates of CP violation in the bosonic sector of the Standard Model. In particular, we show that the effective CP violation for weak gauge fields is not suppressed by the Yukawa couplings of the light quarks and is much larger than the bound given by the Jarlskog determinant.Comment: 4 pages. To appear in the proceedings of the 8th Conference on Strong and Electroweak Matter (SEWM08), Amsterdam, the Netherlands, 26-29 August 200

    Hybrid Inflation Exit through Tunneling

    Full text link
    For hybrid inflationary potentials, we derive the tunneling rate from field configurations along the flat direction towards the waterfall regime. This process competes with the classically rolling evolution of the scalar fields and needs to be strongly subdominant for phenomenologically viable models. Tunneling may exclude models with a mass scale below 10^12 GeV, but can be suppressed by small values of the coupling constants. We find that tunneling is negligible for those models, which do not require fine tuning in order to cancel radiative corrections, in particular for GUT-scale SUSY inflation. In contrast, electroweak scale hybrid inflation is not viable, unless the inflaton-waterfall field coupling is smaller than approximately 10^-11.Comment: 17 pages, 2 figure

    Cosmological perturbation theory at three-loop order

    Full text link
    We analyze the dark matter power spectrum at three-loop order in standard perturbation theory of large scale structure. We observe that at late times the loop expansion does not converge even for large scales (small momenta) well within the linear regime, but exhibits properties compatible with an asymptotic series. We propose a technique to restore the convergence in the limit of small momentum, and use it to obtain a perturbative expansion with improved convergence for momenta in the range where baryonic acoustic oscillations are present. Our results are compared with data from N-body simulations at different redshifts, and we find good agreement within this range.Comment: 29 pages, 8 figures, 1 table; v2 Typos corrected, references added. Matches published versio

    From Boltzmann equations to steady wall velocities

    Full text link
    By means of a relativistic microscopic approach we calculate the expansion velocity of bubbles generated during a first-order electroweak phase transition. In particular, we use the gradient expansion of the Kadanoff-Baym equations to set up the fluid system. This turns out to be equivalent to the one found in the semi-classical approach in the non-relativistic limit. Finally, by including hydrodynamic deflagration effects and solving the Higgs equations of motion in the fluid, we determine velocity and thickness of the bubble walls. Our findings are compared with phenomenological models of wall velocities. As illustrative examples, we apply these results to three theories providing first-order phase transitions with a particle content in the thermal plasma that resembles the Standard Model.Comment: 40 pages, 8 figures; v2: added references, version published in JCA
    corecore