1 research outputs found

    Cross-Linking Density and Temperature Effects on the Self-Assembly of SiO2-PNIPAAm Core-Shell Particles at Interfaces

    No full text
    SiO2PNIPAAm coreshell microgels (PNIPAAm=poly(N-isopropylacrylamide)) with various internal cross-linking densities and different degrees of polymerization were prepared in order to investigate the effects of stability, packing, and temperature responsiveness at polarapolar interfaces. The effects were investigated using interfacial tensiometry, and the particles were visualized by cryo-scanning electron microscopy (SEM) and scanning force microscopy (SFM). The coreshell particles display different interfacial behaviors depending on the polymer shell thickness and degree of internal cross-linking. A thicker polymer shell and reduced internal cross-linking density are more favorable for the stabilization and packing of the particles at oilwater (o/w) interfaces. This was shown qualitatively by SFM of deposited, stabilized emulsion droplets and quantitatively by SFM of particles adsorbed onto a hydrophobic planar silicon dioxide surface, which acted as a model interface system. The temperature responsiveness, which also influences particleinterface interactions, was investigated by dynamic temperature protocols with varied heating rates. These measurements not only showed that the particles had an unusual but very regular and reversible interface stabilization behavior, but also made it possible to assess the nonlinear response of PNIPAAm microgels to external thermal stimuli
    corecore