6 research outputs found

    Eosinophilic gastroenteritis with refractory ulcer disease and gastrointestinal bleeding as a rare manifestation of seronegative gastrointestinal food allergy

    Get PDF
    Gastrointestinal bleeding and iron deficiency anaemia may cause severe symptoms and may require extensive diagnostics and substantial amounts of health resources. This case report focuses on the clinical presentation of a 22 year old patient with recurrent gastrointestinal bleeding from multilocular non-healing ulcers of the stomach, duodenum and jejunum over a period of four years. Extensive gastroenterological and allergological standard diagnostic procedures showed benign ulcerative lesions with tissue eosinophilia, but no conclusive diagnosis. Multiple diagnostic procedures were performed, until finally, endoscopically guided segmental gut lavage identified locally produced, intestinal IgE antibodies by fluoro-enzyme-immunoassay. IgE antibody concentrations at the intestinal level were found to be more-fold increased for total IgE and food-specific IgE against nuts, rye flour, wheat flour, pork, beef and egg yolk compared with healthy controls. Thus, a diet eliminating these allergens was introduced along with antihistamines and administration of a hypoallergenic formula, which resulted in complete healing of the multilocular ulcers with resolution of gastrointestinal bleeding. All gastrointestinal lesions disappeared and total serum IgE levels dropped to normal within 9 months. The patient has been in remission now for more than two years. Eosinophilic gastroenteritis (EG) is well known to induce refractory ulcer disease. In this case, the mechanisms for intestinal damage and gastrointestinal bleeding were identified as local gastrointestinal type I allergy. Therefore, future diagnostics in EG should also be focused on the intestinal level as identification of causative food-specific IgE antibodies proved to be effective to induce remission in this patient

    PHOTOPROBER® Biotin: An Alternative Method for Labeling Archival DNA for Comparative Genomic Hybridization

    No full text
    Comparative genomic hybridization (CGH) represents a powerful method for screening the entire genome of solid tumors for chromosomal imbalances. Particularly it enabled the molecular cytogenetic analysis of archival, formalin‐fixed, paraffin‐embedded (FFPE) tissue. A well‐known dilemma, however, is the poor DNA quality of this material with fragment sizes below 1000 bp. Nick translation, the conventionally used enzymatic DNA labeling method in CGH, leads to even shorter fragments often below a critical limit for successful analysis. In this study we report the alternative application of non‐enzymatic, PHOTOPROBE® biotin labeling for conjugation of the hapten to the DNA prior to in situ hybridization and fluorescence detection. We analyzed 51 FFPE tumor samples mainly from the upper respiratory tract by both labeling methods. In 19 cases, both approaches were successful. The comparison of hybridized metaphases showed a distinct higher fluorescence signal of the PHOTOPROBE® samples sometimes with a discrete cytoplasm background which however did not interfere with specificity and sensitivity of the detected chromosomal imbalances. For further 32 cases characterized by an average DNA fragment size below 1000 bp, PHOTOPROBE® biotin was the only successful labeling technique thus offering a new option for CGH analysis of highly degraded DNA from archival material

    Magen

    No full text
    corecore