380 research outputs found

    Matched Pulse Propagation in a Three-Level System

    Full text link
    The B\"{a}cklund transformation for the three-level Maxwell-Bloch equation is presented in the matrix potential formalism. By applying the B\"{a}cklund transformation to a constant electric field background, we obtain a general solution for matched pulses (a pair of solitary waves) which can emit or absorb a light velocity solitary pulse but otherwise propagate with their shapes invariant. In the special case, this solution describes a steady state pulse without emission or absorption, and becomes the matched pulse solution recently obtained by Hioe and Grobe. A nonlinear superposition rule is derived from the B\"{a}cklund transformation and used for the explicit construction of two solitons as well as nonabelian breathers. Various new features of these solutions are addressed. In particular, we analyze in detail the scattering of "invertons", a specific pair of different wavelength solitons one of which moving with the velocity of light. Unlike the usual case of soliton scattering, the broader inverton changes its sign through the scattering. Surprisingly, the light velocity inverton receives time advance through the scattering thereby moving faster than light, which however does not violate causality.Comment: 20 pages, Latex, 12 eps figure files some comments and references are added. postscript file with 12 figures can be obtained at http://photon.kyunghee.ac.kr/~qhpark
    • …
    corecore