46 research outputs found
Certain Aspects of Silver and Silver Nanoparticles in Wound Care: A Minireview
Resistance to antimicrobial agents by pathogenic bacteria has emerged in recent years and is a major health problem. In this context silver and silver nanoparticles (AgNP) have been known to have inhibitory and bactericidal effects and was used throughout history for treatment of skin ulcer, bone fracture, and supporting wound healing. In all of these applications prevention and treatment of bacterial colonized/infected wounds are critical. In this context silver and its derivatives play an important role in health care. Silver is widely used in clinical practice in the form of silver nitrate and/or silver sulfadiazine. In the last few years silver nanoparticles entered into clinical practice as both antimicrobial and antifungal agents. In addition, nanosilver is used in coating medical devices (catheters) and as component of wound dressings. In this paper we present summarized information about silver and nanoparticles made of silver in the context of their useful properties, especially antibacterial ones, being of a great interest for researchers and clinicians
Spontaneously hypertensive rats exhibit increased liver flavin monooxygenase expression and elevated plasma TMAO levels compared to normotensive and Ang II-dependent hypertensive rats
Background: Flavin monooxygenases (FMOs) are enzymes responsible for the oxidation of a broad spectrum of exogenous and endogenous amines. There is increasing evidence that trimethylamine (TMA), a compound produced by gut bacteria and also recognized as an industrial pollutant, contributes to cardiovascular diseases. FMOs convert TMA into trimethylamine oxide (TMAO), which is an emerging marker of cardiovascular risk. This study hypothesized that blood pressure phenotypes in rats might be associated with variations in the expression of FMOs.Methods: The expression of FMO1, FMO3, and FMO5 was evaluated in the kidneys, liver, lungs, small intestine, and large intestine of normotensive male Wistar-Kyoto rats (WKY) and two distinct hypertensive rat models: spontaneously hypertensive rats (SHRs) and WKY rats with angiotensin II-induced hypertension (WKY-ANG). Plasma concentrations of TMA and TMAO were measured at baseline and after intravenous administration of TMA using liquid chromatography-mass spectrometry (LC-MS).Results: We found that the expression of FMOs in WKY, SHR, and WKY-ANG rats was in the descending order of FMO3 > FMO1 >> FMO5. The highest expression of FMOs was observed in the liver. Notably, SHRs exhibited a significantly elevated expression of FMO3 in the liver compared to WKY and WKY-ANG rats. Additionally, the plasma TMAO/TMA ratio was significantly higher in SHRs than in WKY rats.Conclusion: SHRs demonstrate enhanced expression of FMO3 and a higher plasma TMAO/TMA ratio. The variability in the expression of FMOs and the metabolism of amines might contribute to the hypertensive phenotype observed in SHRs
Keratin-Butyrate Scaffolds Promote Skin Wound Healing in Diabetic Rats Through Down-Regulation of IL-1ÎČ and Up-Regulation of Keratins 16 and 17
Impaired wound healing particularly in diabetics creates a significant healthcare burden. The study aimed to evaluate the effect of keratin-butyrate fibers (FKDP +0.1%NaBu) in a full-thickness skin wound model in 30 diabetic rats. Physicochemical examination showed that the obtained dressing possesses a heterogeneous structure and butyrate was slowly released into the wound. Moreover, the obtained dressing is nontoxic and supports cell growth. In vivo results showed that keratin-butyrate dressing accelerated wound healing on days 4 and 7 post-injury (pâ<â.05). Histopathological and immunofluorescence examination revealed that applied dressing stimulated macrophage infiltration, which favors tissue remodeling and regeneration. The dressing was naturally incorporated into regenerating tissue. The highest mRNA expression level of interleukin 1ÎČ (IL-1ÎČ) was observed during the first 2 weeks in the control wounds compared to FKDP +0.1%NaBu treated wounds, in which IL-1ÎČ was significantly decreased. In FKDP +0.1%NaBu dressed wounds, mRNA expression of IL-10 and VEGF increased significantly (pâ<â.05) from day 14. Keratin-butyrate treated wounds enhanced mRNA expression of keratin 16 and 17 and zonula occludens protein-1 and junctional adhesion molecules (pâ<â.05) on days 14, 21, and 28 post-injuries. Our study showed that keratin butyrate dressing is safe and can efficiently accelerate skin wound healing in diabetic rats
Electrophoretic Determination of Trimethylamine (TMA) in Biological Samples as a Novel Potential Biomarker of Cardiovascular Diseases Methodological Approach
In competitive athletes, the differential diagnosis between nonpathological changes in cardiac morphology associated with training (commonly referred to as âathleteâs heartâ) and certain cardiac diseases with the potential for sudden death is an important and not uncommon clinical problem. The use of noninvasive, fast, and cheap analytical techniques can help in making diagnostic differentiation and planning subsequent clinical strategies. Recent studies have demonstrated the role of gut microbiota and their metabolites in the onset and the development of cardiovascular diseases. Trimethylamine (TMA), a gut bacteria metabolite consisting of carnitine and choline, has recently emerged as a potentially toxic molecule to the circulatory system. The present work aims to develop a simple and cost-effective capillary electrophoresis-based method for the determination of TMA in biological samples. Analytical characteristics of the proposed method were evaluated through the study of its linearity (R2 > 0.9950) and the limit of detection and quantification (LOD = 1.2 ”g/mL; LOQ = 3.6 ”g/mL). The method shows great potential in high-throughput screening applications for TMA analysis in biological samples as a novel potential biomarker of cardiovascular diseases. The proposed electrophoretic method for the determination of TMA in biological samples from patients with cardiac disease is now in progress
Biomaterials in Skin Wound Healing and Tissue Regenerations—An Overview
Wound healing is a complex biological process [...
Beneficial Effect of Wound Dressings Containing Silver and Silver Nanoparticles in Wound HealingâFrom Experimental Studies to Clinical Practice
Impaired wound healing affects hundreds of million people around the world; therefore, chronic wounds are a major problem not only for the patient, but also for already overloaded healthcare systems. Chronic wounds are always very susceptible to infections. Billions of dollars are spent to discover new antibiotics as quickly as possible; however, bacterial resistance against antibiotics is rising even faster. For this reason, a complete shift of the antibacterial treatment paradigm is necessary. The development of technology has allowed us to rediscover well-known agents presenting antimicrobial properties with a better outcome. In this context, silver nanoparticles are a promising candidate for use in such therapy. Silver has many useful properties that can be used in the treatment of chronic wounds, such as anti-bacterial, anti-inflammatory, and anti-oxidative properties. In the form of nanoparticles, silver agents can work even more effectively and can be more easily incorporated into various dressings. Silver-based dressings are already commercially available; however, innovative combinations are still being discovered and very promising results have been described. In this review article, the authors focused on describing experimental and clinical studies exploring dressings containing either silver or silver nanoparticles, the results of which have been published in recent years
Keratin Biomaterials in Skin Wound Healing, an Old Player in Modern Medicine: A Mini Review
Impaired wound healing is a major medical problem. To solve it, researchers around the world have turned their attention to the use of tissue-engineered products to aid in skin regeneration in case of acute and chronic wounds. One of the primary goals of tissue engineering and regenerative medicine is to develop a matrix or scaffold system that mimics the structure and function of native tissue. Keratin biomaterials derived from wool, hair, and bristle have been the subjects of active research in the context of tissue regeneration for over a decade. Keratin derivatives, which can be either soluble or insoluble, are utilized as wound dressings since keratins are dynamically up-regulated and needed in skin wound healing. Tissue biocompatibility, biodegradability, mechanical durability, and natural abundance are only a few of the keratin biomaterials’ properties, making them excellent wound dressing materials to treat acute and chronic wounds. Several experimental and pre-clinical studies described the beneficial effects of the keratin-based wound dressing in faster wound healing. This review focuses exclusively on the biomedical application of a different type of keratin biomaterials as a wound dressing in pre-clinical and clinical conditions
Silk Fibroin Biomaterials and Their Beneficial Role in Skin Wound Healing
The skin, acting as the outer protection of the human body, is most vulnerable to injury. Wound healing can often be impaired, leading to chronic, hard-to-heal wounds. For this reason, searching for the most effective dressings that can significantly enhance the wound healing process is necessary. In this regard, silk fibroin, a protein derived from silk fibres that has excellent properties, is noteworthy. Silk fibroin is highly biocompatible and biodegradable. It can easily make various dressings, which can be loaded with additional substances to improve healing. Dressings based on silk fibroin have anti-inflammatory, pro-angiogenic properties and significantly accelerate skin wound healing, even compared to commercially available wound dressings. Animal studies confirm the beneficial influence of silk fibroin in wound healing. Clinical research focusing on fibroin dressings is also promising. These properties make silk fibroin a remarkable natural material for creating innovative, simple, and effective dressings for skin wound healing. In this review, we summarise the application of silk fibroin biomaterials as wound dressings in full-thickness, burn, and diabetic wounds in preclinical and clinical settings