199 research outputs found

    Existence of an upper limit on the density of excitons in carbon nanotubes by diffusion-limited exciton-exciton annihilation: Experiment and theory

    Full text link
    Through an investigation of photoemission properties of highly-photoexcited single-walled carbon nanotubes, we demonstrate that there is an upper limit on the achievable excitonic density. As the intensity of optical excitation increases, all photoluminescence emission peaks arising from different chirality single-walled carbon nanotubes showed clear saturation in intensity. Each peak exhibited a saturation value that was independent of the excitation wavelength, indicating that there is an upper limit on the excitonic density for each nanotube species. We propose that this saturation behavior is a result of efficient exciton-exciton annihilation through which excitons decay non-radiatively. In order to explain the experimental results and obtain excitonic densities in the saturation regime, we have developed a model, taking into account the generation, diffusion-limited exciton-exciton annihilation, and spontaneous decays of one-dimensional excitons. Using the model, we were able to reproduce the experimentally obtained saturation curves under certain approximations, from which the excitonic densities were estimated. The validity of the model was confirmed through comparison with Monte Carlo simulations. Finally, we show that the conventional rate equation for exciton-exciton annihilation without taking into account exciton diffusion fails to fit the experimentally observed saturation behavior, especially at high excitonic densities.Comment: 5 figures, 1 tabl

    Is the optical conductivity of heavy fermion strange metals Planckian?

    Get PDF
    Strange metal behavior appears across a variety of condensed matter settings and beyond, and achieving a universal understanding is an exciting prospect. The beyond-Landau quantum criticality of Kondo destruction has had considerable success in describing the behavior of strange metal heavy fermion compounds, and there is some evidence that the associated partial localization-delocalization nature can be generalized to diverse materials classes. Other potential overarching principles at play are also being explored. An intriguing proposal is that Planckian scattering, with a rate of kBT/ℏ, leads to the linear temperature dependence of the (dc) electrical resistivity, which is a hallmark of strange metal behavior. Here we extend a previously introduced analysis scheme based on the Drude description of the dc resistivity to optical conductivity data. When they are well described by a simple (ac) Drude model, the scattering rate can be directly extracted. This avoids the need to determine the ratio of charge carrier concentration to effective mass, which has complicated previous analyses based on the dc resistivity. However, we point out that strange metals typically exhibit strong deviations from Drude behavior, as exemplified by the “extreme” strange metal YbRh2Si2. This calls for alternative approaches, and we point to the power of strange metal dynamical (energy-over-temperature) scaling analyses for the inelastic part of the optical conductivity. If such scaling extends to the low-frequency limit, a strange metal relaxation rate can be estimated, and may ultimately be used to test whether strange metals relax in a Planckian manner

    Dicke Superradiance in Solids

    Full text link
    Recent advances in optical studies of condensed matter have led to the emergence of phenomena that have conventionally been studied in the realm of quantum optics. These studies have not only deepened our understanding of light-matter interactions but also introduced aspects of many-body correlations inherent in optical processes in condensed matter systems. This article is concerned with superradiance (SR), a profound quantum optical process predicted by Dicke in 1954. The basic concept of SR applies to a general NN-body system where constituent oscillating dipoles couple together through interaction with a common light field and accelerate the radiative decay of the system. In the most fascinating manifestation of SR, known as superfluorescence (SF), an incoherently prepared system of NN inverted atoms spontaneously develops macroscopic coherence from vacuum fluctuations and produces a delayed pulse of coherent light whose peak intensity N2\propto N^2. Such SF pulses have been observed in atomic and molecular gases, and their intriguing quantum nature has been unambiguously demonstrated. Here, we focus on the rapidly developing field of research on SR in solids, where not only photon-mediated coupling but also strong Coulomb interactions and ultrafast scattering exist. We describe SR and SF in molecular centers in solids, molecular aggregates and crystals, quantum dots, and quantum wells. In particular, we will summarize a series of studies we have recently performed on quantum wells in strong magnetic fields. These studies show that cooperative effects in solid-state systems are not merely small corrections that require exotic conditions to be observed; rather, they can dominate the nonequilibrium dynamics and light emission processes of the entire system of interacting electrons.Comment: 23 pages, 26 figure

    Magneto-reflection spectroscopy of monolayer transition-metal dichalcogenide semiconductors in pulsed magnetic fields

    Get PDF
    We describe recent experimental efforts to perform polarization-resolved optical spectroscopy of monolayer transition-metal dichalcogenide semiconductors in very large pulsed magnetic fields to 65 tesla. The experimental setup and technical challenges are discussed in detail, and temperature-dependent magneto-reflection spectra from atomically thin tungsten disulphide (WS2_2) are presented. The data clearly reveal not only the valley Zeeman effect in these 2D semiconductors, but also the small quadratic exciton diamagnetic shift from which the very small exciton size can be directly inferred. Finally, we present model calculations that demonstrate how the measured diamagnetic shifts can be used to constrain estimates of the exciton binding energy in this new family of monolayer semiconductors.Comment: PCSI-43 conference (Jan. 2016; Palm Springs, CA

    Exciton Diamagnetic Shifts and Valley Zeeman Effects in Monolayer WS2_2 and MoS2_2 to 65 Tesla

    Get PDF
    We report circularly-polarized optical reflection spectroscopy of monolayer WS2_2 and MoS2_2 at low temperatures (4~K) and in high magnetic fields to 65~T. Both the A and the B exciton transitions exhibit a clear and very similar Zeeman splitting of approximately -230~μ\mueV/T (g4g\simeq -4), providing the first measurements of the valley Zeeman effect and associated gg-factors in monolayer transition-metal disulphides. These results complement and are compared with recent low-field photoluminescence measurements of valley degeneracy breaking in the monolayer diselenides MoSe2_2 and WSe2_2. Further, the very large magnetic fields used in our studies allows us to observe the small quadratic diamagnetic shifts of the A and B excitons in monolayer WS2_2 (0.32 and 0.11~μ\mueV/T2^2, respectively), from which we calculate exciton radii of 1.53~nm and 1.16~nm. When analyzed within a model of non-local dielectric screening in monolayer semiconductors, these diamagnetic shifts also constrain and provide estimates of the exciton binding energies (410~meV and 470~meV for the A and B excitons, respectively), further highlighting the utility of high magnetic fields for understanding new 2D materials.Comment: 9 pages, 5 figure
    corecore