4,596 research outputs found
Relativistic models of magnetars: Nonperturbative analytical approach
In the present paper we focus on building simple nonperturbative analytical
relativistic models of magnetars. With this purpose in mind we first develop a
method for generating exact interior solutions to the static and axisymmetric
Einstein-Maxwell-hydrodynamic equations with anisotropic perfect fluid and with
pure poloidal magnetic field. Then using an explicit exact solution we present
a simple magnetar model and calculate some physically interesting quantities as
the surface elipticity and the total energy of the magnetized star.Comment: 10 pages, LaTe
Elliptic algebra U_{q,p}(^sl_2): Drinfeld currents and vertex operators
We investigate the structure of the elliptic algebra U_{q,p}(^sl_2)
introduced earlier by one of the authors. Our construction is based on a new
set of generating series in the quantum affine algebra U_q(^sl_2), which are
elliptic analogs of the Drinfeld currents. They enable us to identify
U_{q,p}(^sl_2) with the tensor product of U_q(^sl_2) and a Heisenberg algebra
generated by P,Q with [Q,P]=1. In terms of these currents, we construct an L
operator satisfying the dynamical RLL relation in the presence of the central
element c. The vertex operators of Lukyanov and Pugai arise as `intertwiners'
of U_{q,p}(^sl_2) for level one representation, in the sense to be elaborated
on in the text. We also present vertex operators with higher level/spin in the
free field representation.Comment: 49 pages, (AMS-)LaTeX ; added an explanation of integration contours;
added comments. To appear in Comm. Math. Phys. Numbering of equations is
correcte
Localization of the Grover walks on spidernets and free Meixner laws
A spidernet is a graph obtained by adding large cycles to an almost regular
tree and considered as an example having intermediate properties of lattices
and trees in the study of discrete-time quantum walks on graphs. We introduce
the Grover walk on a spidernet and its one-dimensional reduction. We derive an
integral representation of the -step transition amplitude in terms of the
free Meixner law which appears as the spectral distribution. As an application
we determine the class of spidernets which exhibit localization. Our method is
based on quantum probabilistic spectral analysis of graphs.Comment: 32 page
The Vertex-Face Correspondence and the Elliptic 6j-symbols
A new formula connecting the elliptic -symbols and the fusion of the
vertex-face intertwining vectors is given. This is based on the identification
of the fusion intertwining vectors with the change of base matrix elements
from Sklyanin's standard base to Rosengren's natural base in the space of even
theta functions of order . The new formula allows us to derive various
properties of the elliptic -symbols, such as the addition formula, the
biorthogonality property, the fusion formula and the Yang-Baxter relation. We
also discuss a connection with the Sklyanin algebra based on the factorised
formula for the -operator.Comment: 23 page
Free Field Approach to the Dilute A_L Models
We construct a free field realization of vertex operators of the dilute A_L
models along with the Felder complex. For L=3, we also study an E_8 structure
in terms of the deformed Virasoro currents.Comment: (AMS-)LaTeX(2e), 43page
Wigner formula of rotation matrices and quantum walks
Quantization of a random-walk model is performed by giving a qudit (a
multi-component wave function) to a walker at site and by introducing a quantum
coin, which is a matrix representation of a unitary transformation. In quantum
walks, the qudit of walker is mixed according to the quantum coin at each time
step, when the walker hops to other sites. As special cases of the quantum
walks driven by high-dimensional quantum coins generally studied by Brun,
Carteret, and Ambainis, we study the models obtained by choosing rotation as
the unitary transformation, whose matrix representations determine quantum
coins. We show that Wigner's -dimensional unitary representations of
rotations with half-integers 's are useful to analyze the probability laws
of quantum walks. For any value of half-integer , convergence of all moments
of walker's pseudovelocity in the long-time limit is proved. It is generally
shown for the present models that, if is even, the probability measure
of limit distribution is given by a superposition of terms of scaled
Konno's density functions, and if is odd, it is a superposition of
terms of scaled Konno's density functions and a Dirac's delta function at the
origin. For the two-, three-, and four-component models, the probability
densities of limit distributions are explicitly calculated and their dependence
on the parameters of quantum coins and on the initial qudit of walker is
completely determined. Comparison with computer simulation results is also
shown.Comment: v2: REVTeX4, 15 pages, 4 figure
Localization of Two-Dimensional Quantum Walks
The Grover walk, which is related to the Grover's search algorithm on a
quantum computer, is one of the typical discrete time quantum walks. However, a
localization of the two-dimensional Grover walk starting from a fixed point is
striking different from other types of quantum walks. The present paper
explains the reason why the walker who moves according to the degree-four
Grover's operator can remain at the starting point with a high probability. It
is shown that the key factor for the localization is due to the degeneration of
eigenvalues of the time evolution operator. In fact, the global time evolution
of the quantum walk on a large lattice is mainly determined by the degree of
degeneration. The dependence of the localization on the initial state is also
considered by calculating the wave function analytically.Comment: 21 pages RevTeX, 4 figures ep
- …