4,596 research outputs found

    Relativistic models of magnetars: Nonperturbative analytical approach

    Full text link
    In the present paper we focus on building simple nonperturbative analytical relativistic models of magnetars. With this purpose in mind we first develop a method for generating exact interior solutions to the static and axisymmetric Einstein-Maxwell-hydrodynamic equations with anisotropic perfect fluid and with pure poloidal magnetic field. Then using an explicit exact solution we present a simple magnetar model and calculate some physically interesting quantities as the surface elipticity and the total energy of the magnetized star.Comment: 10 pages, LaTe

    Elliptic algebra U_{q,p}(^sl_2): Drinfeld currents and vertex operators

    Full text link
    We investigate the structure of the elliptic algebra U_{q,p}(^sl_2) introduced earlier by one of the authors. Our construction is based on a new set of generating series in the quantum affine algebra U_q(^sl_2), which are elliptic analogs of the Drinfeld currents. They enable us to identify U_{q,p}(^sl_2) with the tensor product of U_q(^sl_2) and a Heisenberg algebra generated by P,Q with [Q,P]=1. In terms of these currents, we construct an L operator satisfying the dynamical RLL relation in the presence of the central element c. The vertex operators of Lukyanov and Pugai arise as `intertwiners' of U_{q,p}(^sl_2) for level one representation, in the sense to be elaborated on in the text. We also present vertex operators with higher level/spin in the free field representation.Comment: 49 pages, (AMS-)LaTeX ; added an explanation of integration contours; added comments. To appear in Comm. Math. Phys. Numbering of equations is correcte

    Localization of the Grover walks on spidernets and free Meixner laws

    Full text link
    A spidernet is a graph obtained by adding large cycles to an almost regular tree and considered as an example having intermediate properties of lattices and trees in the study of discrete-time quantum walks on graphs. We introduce the Grover walk on a spidernet and its one-dimensional reduction. We derive an integral representation of the nn-step transition amplitude in terms of the free Meixner law which appears as the spectral distribution. As an application we determine the class of spidernets which exhibit localization. Our method is based on quantum probabilistic spectral analysis of graphs.Comment: 32 page

    The Vertex-Face Correspondence and the Elliptic 6j-symbols

    Full text link
    A new formula connecting the elliptic 6j6j-symbols and the fusion of the vertex-face intertwining vectors is given. This is based on the identification of the kk fusion intertwining vectors with the change of base matrix elements from Sklyanin's standard base to Rosengren's natural base in the space of even theta functions of order 2k2k. The new formula allows us to derive various properties of the elliptic 6j6j-symbols, such as the addition formula, the biorthogonality property, the fusion formula and the Yang-Baxter relation. We also discuss a connection with the Sklyanin algebra based on the factorised formula for the LL-operator.Comment: 23 page

    Free Field Approach to the Dilute A_L Models

    Full text link
    We construct a free field realization of vertex operators of the dilute A_L models along with the Felder complex. For L=3, we also study an E_8 structure in terms of the deformed Virasoro currents.Comment: (AMS-)LaTeX(2e), 43page

    Wigner formula of rotation matrices and quantum walks

    Get PDF
    Quantization of a random-walk model is performed by giving a qudit (a multi-component wave function) to a walker at site and by introducing a quantum coin, which is a matrix representation of a unitary transformation. In quantum walks, the qudit of walker is mixed according to the quantum coin at each time step, when the walker hops to other sites. As special cases of the quantum walks driven by high-dimensional quantum coins generally studied by Brun, Carteret, and Ambainis, we study the models obtained by choosing rotation as the unitary transformation, whose matrix representations determine quantum coins. We show that Wigner's (2j+1)(2j+1)-dimensional unitary representations of rotations with half-integers jj's are useful to analyze the probability laws of quantum walks. For any value of half-integer jj, convergence of all moments of walker's pseudovelocity in the long-time limit is proved. It is generally shown for the present models that, if (2j+1)(2j+1) is even, the probability measure of limit distribution is given by a superposition of (2j+1)/2(2j+1)/2 terms of scaled Konno's density functions, and if (2j+1)(2j+1) is odd, it is a superposition of jj terms of scaled Konno's density functions and a Dirac's delta function at the origin. For the two-, three-, and four-component models, the probability densities of limit distributions are explicitly calculated and their dependence on the parameters of quantum coins and on the initial qudit of walker is completely determined. Comparison with computer simulation results is also shown.Comment: v2: REVTeX4, 15 pages, 4 figure

    Localization of Two-Dimensional Quantum Walks

    Full text link
    The Grover walk, which is related to the Grover's search algorithm on a quantum computer, is one of the typical discrete time quantum walks. However, a localization of the two-dimensional Grover walk starting from a fixed point is striking different from other types of quantum walks. The present paper explains the reason why the walker who moves according to the degree-four Grover's operator can remain at the starting point with a high probability. It is shown that the key factor for the localization is due to the degeneration of eigenvalues of the time evolution operator. In fact, the global time evolution of the quantum walk on a large lattice is mainly determined by the degree of degeneration. The dependence of the localization on the initial state is also considered by calculating the wave function analytically.Comment: 21 pages RevTeX, 4 figures ep
    corecore