62 research outputs found

    Definition and classification of singularities in GR: classical and quantum

    Full text link
    We will briefly review the definition and classification of classical and quantum singularities in general relativity. Examples of classically singular spacetimes that do not have quantum singularities will be given. We will present results on quantum singularities in quasiregular spacetimes. We will also show that a strong repulsive "potential" near the classical singularity can turn a classically singular spacetime into a quantum mechanically nonsingular spacetime.Comment: 3 pages, no figures, submitted to Proceedings of the Tenth Marcel Grossmann Meeting on General Relativity, Rio de Janeiro, July 20-26, 200

    Quantum singularities in spherically symmetric, conformally static spacetimes

    Full text link
    A definition of quantum singularity for the case of static spacetimes has recently been extended to conformally static spacetimes. Here the theory behind quantum singularities in conformally static spacetimes is reviewed, and then applied to a class of spherically symmetric, conformally static spacetimes, including as special cases those studied by Roberts, by Fonarev, and by Husain, Martinez, and N\'u\~nez. We use solutions of the generally coupled, massless Klein-Gordon equation as test fields. In this way we find the ranges of metric parameters and coupling coefficients for which classical timelike singularities in these spacetimes are healed quantum mechanically.Comment: 21 pages, no figure

    Are classically singular spacetimes quantum mechanically singular as well?

    Full text link
    Are the classical singularities of general relativistic spacetimes, normally defined by the incompleteness of classical particle paths, still singular if quantum mechanical particles are used instead? This is the question we will attempt to answer for particles obeying the quantum mechanical wave equations for scalar, null vector and spinor particles. The analysis will be restricted to certain static general relativistic spacetimes that classically contain the mildest true classical singularities, quasiregular singularities.Comment: 3 pages, no figures, submitted to the Proceedings of the Tenth Marcel Grossmann Meeting on General Relativity, Rio de Janeiro, July 20-26, 200

    Classical and quantum properties of a 2-sphere singularity

    Full text link
    Recently Boehmer and Lobo have shown that a metric due to Florides, which has been used as an interior Schwarzschild solution, can be extended to reveal a classical singularity that has the form of a two-sphere. Here the singularity is shown to be a scalar curvature singularity that is both timelike and gravitationally weak. It is also shown to be a quantum singularity because the Klein-Gordon operator associated with quantum mechanical particles approaching the singularity is not essentially self-adjoint.Comment: 10 pages, 1 figure, minor corrections, final versio
    • …
    corecore