5,262 research outputs found

    Auditory neuroscience: Development, transduction and integration

    Get PDF
    Hearing underlies our ability to locate sound sources in the environment, our appreciation of music, and our ability to communicate. Participants in the National Academy of Sciences colloquium on Auditory Neuroscience: Development, Transduction, and Integration presented research results bearing on four key issues in auditory research. How does the complex inner ear develop? How does the cochlea transduce sounds into electrical signals? How does the brain's ability to compute the location of a sound source develop? How does the forebrain analyze complex sounds, particularly species-specific communications? This article provides an introduction to the papers stemming from the meeting

    Electric Conductance of Rh Atomic Contacts under Electrochemical Potential Control

    Full text link
    The electric conductance of Rh atomic contacts was investigated under the electrochemical potential control. The conductance histogram of Rh atomic contacts varied with the electrochemical potential. When the electrochemical potential of the contact was kept at Φ0\Phi_{0}= 0.1 V vs. Ag/AgCl (Rh potential), the conductance histogram did not show any features. At Φ0\Phi_{0}= -0.1 V (under potential deposited hydrogen potential), the conductance histogram showed a feature around 2.3 G0G_{0} (G0G_{0} =2e2/he^{2}/h), which agreed with the conductance value of a clean Rh atomic contact, which was observed in ultrahigh vacuum at low temperature. At Φ0\Phi_{0}= -0.25 V (over potential deposited hydrogen potential), the conductance histogram showed features around 0.3 and 1.0 G0G_{0}. The conductance behavior of the Rh atomic contact was discussed by comparing previously reported results of other metals, Au, Ag, Cu, Pt, Pd, Ni, Co, and Fe. The conductance behavior of the metal atomic contacts related with the strength of the interaction between hydrogen and metal surface.Comment: 5 pages, 4 figures, Phys. Rev. B, in press

    Simple Two-Dimensional Model for the Elastic Origin of Cooperativity among Spin States of Spin-Crossover Complexes

    Full text link
    We study the origin of the cooperative nature of spin crossover (SC) between low spin (LS) and high spin (HS) states from the view point of elastic interactions among molecules. As the size of each molecule changes depending on its spin state, the elastic interaction among the lattice distortions provides the cooperative interaction of the spin states. We develop a simple model of SC with intra and intermolecular potentials which accounts for the elastic interaction including the effect of the inhomogeneity of the spin states, and apply constant temperature molecular dynamics based on the Nos\'e-Hoover formalism. We demonstrate that, with increase of the strength of the intermolecular interactions, the temperature dependence of the HS component changes from a gradual crossover to a first-order transition.Comment: 4 pages, 4 figure

    Nielsen-Olesen strings in Supersymmetric models

    Get PDF
    We investigate the behaviour of a model with two oppositely charged scalar fields. In the Bogomol'nyi limit this may be seen as the scalar sector of N=1 supersymmetric QED, and it has been shown that cosmic strings form. We examine numerically the model out of the Bogomol'nyi limit, and show that this remains the case. We then add supersymmetry-breaking mass terms to the supersymmetric model, and show that strings still survive. Finally we consider the extension to N=2 supersymmetry with supersymmetry-breaking mass terms, and show that this leads to the formation of stable cosmic strings, unlike in the unbroken case.Comment: 7 pages, 2 figues, uses revtex4; minor typos corrected; references adde

    Effect of quantum fluctuations on topological excitations and central charge in supersymmetric theories

    Get PDF
    The effect of quantum fluctuations on Bogomol'nyi-Prasad-Sommerfield (BPS)-saturated topological excitations in supersymmetric theories is studied. Focus is placed on a sequence of topological excitations that derive from the same classical soliton or vortex in lower dimensions and it is shown that their quantum characteristics, such as the spectrum and profile, differ critically with the dimension of spacetime. In all the examples examined the supercharge algebra retains its classical form although short-wavelength fluctuations may modify the operator structure of the central charge, yielding an anomaly. The central charge, on taking the expectation value, is further affected by long-wavelength fluctuations, and this makes the BPS-excitation spectra only approximately calculable in some low-dimensional theories. In four dimensions, in contrast, holomorphy plays a special role in stabilizing the BPS-excitation spectra against quantum corrections. The basic tool in our study is the superfield supercurrent, from which the supercharge algebra with a central extension is extracted in a supersymmetric setting. A general method is developed to determine the associated superconformal anomaly by considering dilatation directly in superspace.Comment: 10 pages, Revtex, to appear in PR

    Hierarchical clustering and formation of power-law correlation in 1-dimensional self-gravitating system

    Get PDF
    The process of formation of fractal structure in one-dimensional self-gravitating system is examined numerically. It is clarified that structures created in small spatial scale grow up to larger scale through clustering of clusters, and form power-law correlation.Comment: 9pages,4figure

    Three reversible states controlled on a gold monoatomic contact by the electrochemical potential

    Full text link
    Conductance of an Au mono atomic contact was investigated under the electrochemical potential control. The Au contact showed three different behaviors depending on the potential: 1 G0G_{0} (G0G_{0} = 2e2/h2e^{2}/h), 0.5 G0G_{0} and not-well defined values below 1 G0G_{0} were shown when the potential of the contact was kept at -0.6 V (double layer potential), -1.0 V (hydrogen evolution potential), and 0.8 V (oxide formation potential) versus Ag/AgCl in 0.1 M Na2_{2}SO4_{4} solution, respectively. These three reversible states and their respective conductances could be fully controlled by the electrochemical potential. These changes in the conductance values are discussed based on the proposed structure models of hydrogen adsorbed and oxygen incorporated on an Au mono atomic contact.Comment: 8 pages, 4 figures, to be appeared in Physical Review

    Formation of fractal structure in many-body systems with attractive power-law potentials

    Full text link
    We study the formation of fractal structure in one-dimensional many-body systems with attractive power-law potentials. Numerical analysis shows that the range of the index of the power for which fractal structure emerges is limited. Dependence of the growth rate on wavenumber and power-index is obtained by linear analysis of the collisionless Boltzmann equation, which supports the numerical results.Comment: accepted by PR

    Gravitino condensation in fivebrane backgrounds

    Full text link
    We calculate the tension of the D3-brane in the fivebrane background which is described by the exactly solvable SU(2)_k x U(1) world-sheet conformal field theory with large Kac-Moody level k. The D3-brane tension is extracted from the amplitude of one closed string exchange between two parallel D3-branes, and the amplitude is calculated by utilizing the open-closed string duality. The tension of the D3-brane in the background does not coincide with the one in the flat space-time even in the flat space-time limit: k -> infinity. The finite curvature effect should vanish in the flat space-time limit and only the topological effect can remain. Therefore, the deviation indicates the condensation of gravitino and/or dilatino which has been expected in the fivebrane background as a gravitational instanton.Comment: 16 pages, 1 figur
    • …
    corecore