177 research outputs found
Replacing Lu-177 with Tb-161 in DOTA-TATE and PSMA-617 therapy:potential dosimetric implications for activity selection
Aim: To explore the dosimetric effect of substituting Lu-177 with Tb-161 in targeted radionuclide therapy (TRT) using the registered tracers DOTA-TATE and PSMA-617. Methods: Using established kinetic data for [177Lu]Lu-DOTA-TATE and [177Lu]Lu-PSMA-617, radiation absorbed doses to typical tumour lesion as well as non-target tissues ([177Lu]Lu-DOTA-TATE: kidneys, spleen and liver, [177Lu]Lu-PSMA-617: kidneys, liver and salivary glands) were calculated for Lu-177 and Tb-161. Results: For both DOTA-TATE and PSMA-617, the substitution of Lu-177 with Tb-161 results in an increase in the delivered dose per unit of activity to tumour tissue by 40%. If an equivalent non-target delivered dose is strived for in order not to increase toxicity, based on kidney absorbed dose, 7400 MBq Lu-177 per cycle should be substituted with 5400 MBq Tb-161 for DOTA-TATE and 5300 MBq of Tb-161 for PSMA-617.Conclusion: When substituting Lu-177 with Tb-161, activity conversion is necessary in order not to exceed non-target dose limits.</p
Treatment of [99mTc]Tc-hydroxy-diphosphonate ([99mTc]Tc-HDP) extravasation using hyaluronidase
Extravasation of 99mTc-labeled radiopharmaceuticals is generally considered to require no specific intervention. In the presented case, the use of hyaluronidase could have minimized the adverse effects resulting from such an extravasation. Currently, no guidelines exist regarding the use of hyaluronidase after extravasation of [99mTc]Tc-HDP. Considering the low risk of administering hyaluronidase, it should be considered to limit the risk of injury after extravasation of [99mTc]Tc-HDP.</p
Urinary excretion kinetics of [<sup>177</sup>Lu]Lu-PSMA-617
Introduction: For the implementation of suitable radiation safety measures in [177Lu]Lu-PSMA-617 therapy, additional insight into excretion kinetics is important. This study evaluates this kinetics in prostate cancer patients via direct urine measurements. Methods: Both the short-term (up to 24 h, n = 28 cycles) and long-term kinetics (up to 7 weeks, n = 35 samples) were evaluated by collection of urine samples. Samples were measured on a scintillation counter to determine excretion kinetics. Results: The mean excretion half-time during the first 20 h was 4.9 h. Kinetics was significantly different for patients with kidney function below or above eGFR 65 ml/min. Calculated skin equivalent dose in case of urinary contamination was between 50 and 145 mSv when it was caused between 0 and 8 h p.i. Measurable amounts of 177Lu were found in urine samples up to 18 days p.i. Conclusion: Excretion kinetics of [177Lu]Lu-PSMA-617 is especially relevant during the first 24 h, when accurate radiation safety measures are important to prevent skin contamination. Measures for accurate waste management are relevant up to 18 days.</p
The Balance Between the Therapeutic Efficacy and Safety of [<sup>177</sup>Lu]Lu-NeoB in a Preclinical Prostate Cancer Model
Purpose: Radiolabeled NeoB is a promising gastrin-releasing peptide receptor (GRPR)–targeting radiopharmaceutical for theranostics of GRPR-expressing malignancies, e.g., prostate cancer (PCa). The aim of this study was to evaluate the effect of different doses of [177Lu]Lu-NeoB on the balance between therapeutic efficacy and safety in a preclinical PCa model. Procedures: To determine the efficacy of [177Lu]Lu-NeoB, PC-3 xenografted mice received 3 sham injections (control group) or 3 injections of 30 MBq/300 pmol, 40 MBq/400 pmol, or 60 MBq/600 pmol [177Lu]Lu-NeoB (groups 1, 2, and 3, respectively) 1 week apart. To quantify tumor uptake, single-photon emission computed tomography/computed tomography (SPECT/CT) imaging was performed 4 h after the first, second, and third injection on a separate group of animals. For safety evaluations, pancreatic and renal tissues of non-tumor-bearing mice treated with the abovementioned [177Lu]Lu-NeoB doses were evaluated 12 and 24 weeks post-treatment. Results: Treatment of PC-3 tumors with all three studied [177Lu]Lu-NeoB doses was effective. Median survival times were significantly (p < 0.0001) improved for treatment groups 1, 2, and 3 versus the control group (82 days, 89 days, 99 days versus 19 days, respectively). However, no significant differences were observed between treatment groups. Quantification of SPECT/CT images showed minimal differences in the average absolute radioactivity uptake, especially after the third injection. Histopathological analysis revealed no clear signs of treatment-related pancreatic toxicity. For the kidneys, atrophy and fibrosis were observed for one animal from group 1 and a chronic inflammatory response was observed for both animals from group 3 at 24 weeks post-treatment. Conclusions: Treatment with [177Lu]Lu-NeoB is effective in a preclinical PCa model. Adjusting the administered dose could positively impact the risk-benefit balance as a higher dose might not lead to an increased therapeutic effect, but it may lead to an increase in toxicological effects in healthy organs such as the kidneys.</p
Bone marrow dosimetry in low volume mHSPC patients receiving Lu-177-PSMA therapy using SPECT/CT
Background: Bone marrow toxicity in advanced prostate cancer patients who receive [177Lu]Lu-PSMA-617 is a well-known concern. In early stage patients; e.g. low volume metastatic hormone sensitive prostate cancer (mHSPC) patients, prevention of late bone marrow toxicity is even more crucial due to longer life expectancy. To date, bone marrow dosimetry is primarily performed using blood sampling. This method is time consuming and does not account for possible active bone marrow uptake. Therefore other methodologies are investigated. We calculated the bone marrow absorbed dose for [177Lu]Lu-PSMA-617 in mHSPC patients using SPECT/CT imaging and compared it to the blood sampling method as reference. Methods: Eight mHSPC patients underwent two cycles (3 and 6 GBq) of [177Lu]Lu-PSMA-617 therapy. After each cycle, five time point (1 h, 1 day, 2 days, 3 days, 7 days) SPECT/CT was performed at kidney level. Bone marrow dosimetry was performed using commercial software by drawing ten 1.5 cm diameter spheres in the lowest ten vertebrae to determine the time-integrated activity. Simplified protocols using only 2 imaging time points and 3 vertebrae were also compared. Blood-based dosimetry was based on the blood sampling method according to the EANM guideline. Results: Mean bone marrow absorbed dose was significantly different (p < 0.01) for the imaging based method (25.4 ± 8.7 mGy/GBq) and the blood based method (17.2 ± 3.4 mGy/GBq), with an increasing absorbed dose ratio between both methods over time. Bland Altman analysis of both simplification steps showed that differences in absorbed dose were all within the 95% limits of agreement. Conclusion: This study showed that bone marrow absorbed dose after [177Lu]Lu-PSMA-617 can be determined using an imaging-based method of the lower vertebrae, and simplified using 2 time points (1 and 7 days) and 3 vertebrae. An increasing absorbed dose ratio over time between the imaging-based method and blood-based method suggests that there might be specific bone marrow binding of [177Lu]Lu-PSMA-617.</p
Accuracy of holmium-166 SPECT/CT quantification over a large range of activities
Background: Quantitative imaging is a crucial step for dosimetry in radionuclide therapies. Traditionally, SPECT/CT imaging is quantified based on scanner-specific conversion factors or self-calibration, but recently absolute quantification methods have been introduced in commercial SPECT reconstruction software (Broad Quantification, Siemens Healthineers). In this phantom study we investigate the accuracy of three quantification methods for holmium-166 SPECT/CT imaging, and provide recommendations for clinical dosimetry.Methods: One cylindrical phantom, filled with a homogeneous holmium-166-chloride activity concentration solution, was imaged at one time point to determine a scanner-specific conversion factor, and to characterize the spatial dependency of the activity concentration recovery. One Jaszczak phantom with six fillable spheres, 10:1 sphere-to-background ratio, was imaged over a large range of holmium-166 activities (61-3130 MBq). The images were reconstructed with either an ordered subset expectation maximization (OSEM, Flash3D-reconstruction; scanner-specific quantification or self-calibration quantification) or an ordered subset conjugate gradient (OSCG, xSPECT-reconstruction; Broad Quantification) algorithm. These three quantification methods were compared for the data of the Jaszczak phantom and evaluated based on whole phantom recovered activity, activity concentration recovery coefficients (ACRC), and recovery curves. Results: The activity recovery in the Jaszczak phantom was 28–115% for the scanner-specific, and 57–97% for the Broad Quantification quantification methods, respectively. The self-calibration-based activity recovery is inherently always 100%. The ACRC for the largest sphere (Ø60 mm, ~ 113 mL) ranged over (depending on the activity level) 0.22–0.89, 0.76–0.86, 0.39–0.72 for scanner-specific, self-calibration and Broad Quantification, respectively. Conclusion: Of the three investigated quantification methods, the self-calibration technique produces quantitative SPECT images with the highest accuracy in the investigated holmium-166 activity range.</p
Bone marrow dosimetry in low volume mHSPC patients receiving Lu-177-PSMA therapy using SPECT/CT
Background: Bone marrow toxicity in advanced prostate cancer patients who receive [177Lu]Lu-PSMA-617 is a well-known concern. In early stage patients; e.g. low volume metastatic hormone sensitive prostate cancer (mHSPC) patients, prevention of late bone marrow toxicity is even more crucial due to longer life expectancy. To date, bone marrow dosimetry is primarily performed using blood sampling. This method is time consuming and does not account for possible active bone marrow uptake. Therefore other methodologies are investigated. We calculated the bone marrow absorbed dose for [177Lu]Lu-PSMA-617 in mHSPC patients using SPECT/CT imaging and compared it to the blood sampling method as reference. Methods: Eight mHSPC patients underwent two cycles (3 and 6 GBq) of [177Lu]Lu-PSMA-617 therapy. After each cycle, five time point (1 h, 1 day, 2 days, 3 days, 7 days) SPECT/CT was performed at kidney level. Bone marrow dosimetry was performed using commercial software by drawing ten 1.5 cm diameter spheres in the lowest ten vertebrae to determine the time-integrated activity. Simplified protocols using only 2 imaging time points and 3 vertebrae were also compared. Blood-based dosimetry was based on the blood sampling method according to the EANM guideline. Results: Mean bone marrow absorbed dose was significantly different (p < 0.01) for the imaging based method (25.4 ± 8.7 mGy/GBq) and the blood based method (17.2 ± 3.4 mGy/GBq), with an increasing absorbed dose ratio between both methods over time. Bland Altman analysis of both simplification steps showed that differences in absorbed dose were all within the 95% limits of agreement. Conclusion: This study showed that bone marrow absorbed dose after [177Lu]Lu-PSMA-617 can be determined using an imaging-based method of the lower vertebrae, and simplified using 2 time points (1 and 7 days) and 3 vertebrae. An increasing absorbed dose ratio over time between the imaging-based method and blood-based method suggests that there might be specific bone marrow binding of [177Lu]Lu-PSMA-617.</p
Implementing Ac-225 labelled radiopharmaceuticals:practical considerations and (pre-)clinical perspectives
BackgroundIn the past years, there has been a notable increase in interest regarding targeted alpha therapy using Ac-225, driven by the observed promising clinical anti-tumor effects. As the production and technology has advanced, the availability of Ac-225 is expected to increase in the near future, making the treatment available to patients worldwide.Main bodyAc-225 can be labelled to different biological vectors, whereby the success of developing a radiopharmaceutical depends heavily on the labelling conditions, purity of the radionuclide source, chelator, and type of quenchers used to avoid radiolysis. Multiple (methodological) challenges need to be overcome when working with Ac-225; as alpha-emission detection is time consuming and highly geometry dependent, a gamma co-emission is used, but has to be in equilibrium with the mother-nuclide. Because of the high impact of alpha emitters in vivo it is highly recommended to cross-calibrate the Ac-225 measurements for used quality control (QC) techniques (radio-TLC, HPLC, HP-Ge detector, and gamma counter). More strict health physics regulations apply, as Ac-225 has a high toxicity, thereby limiting practical handling and quantities used for QC analysis.ConclusionThis overview focuses specifically on the practical and methodological challenges when working with Ac-225 labelled radiopharmaceuticals, and underlines the required infrastructure and (detection) methods for the (pre-)clinical application
- …