41 research outputs found

    Mitochondrial respiration and membrane potential after low-flow ischemia are not affected by ischemic preconditioning

    No full text
    Mitochondrial function following prolonged ischemia and subsequent reperfusion is better preserved by ischemic preconditioning (IP). In the present study, we analyzed whether or not IP has an impact on mitochondrial function at the end of a sustained ischemic period. G\uf6ttinger minipigs were subjected to 90-min low-flow ischemia without (n=5) and with (n=5) a preconditioning cycle of 10-min ischemia and 15-min reperfusion. Mitochondria were isolated from the ischemic or preconditioned anterior wall (AW) and the control posterior wall (PW) at the end of ischemia. Basal mitochondrial respiration was not different between AW and PW. The ADP-stimulated (state 3) respiration in AW mitochondria compared to PW mitochondria was equally decreased in non-preconditioned and preconditioned pigs. The uncoupled respiration as well as the membrane potential (rhodamine 123 fluorescence) were not significantly different between groups. However, the recovery of the membrane potential (Delta rhodamine 123 fluorescence/s) after the addition of ADP was delayed in mitochondria obtained from AW compared to PW, both in non-preconditioned and in preconditioned pig hearts. Neither the amount of marker proteins for complexes of the electron transport chain nor the level of reactive oxygen species were affected by ischemia without or with IP. State 3 respiration and recovery of membrane potential were impaired in pig mitochondria after 90 min of low-flow ischemia. IP did not improve mitochondrial function during ischemia. Therefore, the preservation of mitochondrial function by IP may occur during reperfusion rather than during the sustained ischemic period

    The contribution of reactive oxygen species and p38 mitogen activated protein kinase to myofilament oxidation and progression of heart failure in rabbits.

    No full text
    BACKGROUND AND PURPOSE: The formation of reactive oxygen species (ROS) is increased in heart failure (HF). However, the causal and mechanistic relationship of ROS formation with contractile dysfunction is not clear in detail. Therefore, ROS formation, myofibrillar protein oxidation and p38 MAP kinase activation were related to contractile function in failing rabbit hearts. EXPERIMENTAL APPROACH AND KEY RESULTS: Three weeks of rapid left ventricular (LV) pacing reduced LV shortening fraction (SF, echocardiography) from 32 +/- 1% to 13 +/- 1%. ROS formation, as assessed by dihydroethidine staining, increased by 36 +/- 8% and was associated with increased tropomyosin oxidation, as reflected by dimer formation (dimer to monomer ratio increased 2.28 +/- 0.66-fold in HF vs. sham, P < 0.05). Apoptosis (TdT-mediated dUTP nick end labelling staining) increased more than 12-fold after 3 weeks of pacing when a significant increase in the phosphorylation of p38 MAP kinase and HSP27 was detected (Western blotting). Vitamins C and E abolished the increases in ROS formation and tropomyosin oxidation along with an improvement of LVSF (19 +/- 1%, P < 0.05 vs. untreated HF) and prevention of apoptosis, but without modifying p38 MAP kinase activation. Inhibition of p38 MAP kinase by SB281832 counteracted ROS formation, tropomyosin oxidation and contractile failure, without affecting apoptosis. CONCLUSIONS AND IMPLICATIONS: Thus, p38 MAP kinase activation appears to be upstream rather than downstream of ROS, which impacts on LV function through myofibrillar oxidation. p38 MAP kinase inhibition is a potential target to prevent or treat HF

    Connexin 43 in cardiomyocyte mitochondria and its increase by ischemic preconditioning

    No full text
    OBJECTIVE: Connexin 43 (Cx43) is involved in infarct size reduction by ischemic preconditioning (IP); the underlying mechanism of protection, however, is unknown. Since mitochondria have been proposed to be involved in IP's protection, the present study analyzed whether Cx43 is localized at mitochondria of cardiomyocytes and whether such localization is affected by IP. METHODS AND RESULTS: Western blot analysis on mitochondrial preparations isolated from rat, mouse, pig, and human hearts showed the presence of Cx43. The preparations were not contaminated with markers for other cell compartments. The localization of Cx43 to mitochondria was also confirmed by FACS sorting (double staining with MitoTracker Red and Cx43) and immuno-electron and confocal microscopy. To study the role of Cx43 in IP, mitochondria were isolated from the ischemic anterior wall (AW) and the control posterior wall (PW) of pig myocardium at the end of 90 min low-flow ischemia without (n=13) or with (n=13) a preceding preconditioning cycle of 10 min ischemia and 15 min reperfusion. With IP, the mitochondrial Cx43/adenine nucleotide transporter ratio was 3.4+/-0.7 fold greater in AW than in PW, whereas the ratio remained unchanged in non-preconditioned myocardium (1.1+/-0.2, p<0.05). The enhancement of the mitochondrial Cx43 protein level occurred rapidly, since an increase of mitochondrial Cx43 was already detected with two cycles of 5 min ischemia/reperfusion in isolated rat hearts to 262+/-63% of baseline. CONCLUSION: These data demonstrate that Cx43 is localized at cardiomyocyte mitochondria and that IP enhances such mitochondrial localization

    Increased inducible nitric oxide synthase and arginase II expression in heart failure: no net nitrite/nitrate production and protein S-nitrosylation

    No full text
    Our objective was to address the balance of inducible nitric oxide (NO) synthase (iNOS) and arginase and their contribution to contractile dysfunction in heart failure (HF). Excessive NO formation is thought to contribute to contractile dysfunction; in macrophages, increased iNOS expression is associated with increased arginase expression, which competes with iNOS for arginine. With substrate limitation, iNOS may become uncoupled and produce reactive oxygen species (ROS). In rabbits, HF was induced by left ventricular (LV) pacing (400 beats/min) for 3 wk. iNOS mRNA [quantitative real-time PCR (qRT-PCR)] and protein expression (confocal microscopy) were detected, and arginase II expression was quantified with Western blot; serum arginine and myocardial nitrite and nitrate concentrations were determined by chemiluminescence, and protein S-nitrosylation with Western blot. Superoxide anions were quantified with dihydroethidine staining. HF rabbits had increased LV end-diastolic diameter [20.0 + or - 0.5 (SE) vs. 17.2 + or - 0.3 mm in sham] and decreased systolic fractional shortening (11.1 + or - 1.4 vs. 30.6 + or - 0.7% in sham; both P < 0.05). Myocardial iNOS mRNA and protein expression were increased, however, not associated with increased myocardial nitrite or nitrate concentrations or protein S-nitrosylation. The serum arginine concentration was decreased (124.3 + or - 5.6 vs. 155.4 + or - 12.0 micromol/l in sham; P < 0.05) at a time when cardiac arginase II expression was increased (0.06 + or - 0.01 vs. 0.02 + or - 0.01 arbitrary units in sham; P < 0.05). Inhibition of iNOS with 1400W attenuated superoxide anion formation and contractile dysfunction in failing hearts. Concomitant increases in iNOS and arginase expression result in unchanged NO species and protein S-nitrosylation; with substrate limitation, uncoupled iNOS produces superoxide anions and contributes to contractile dysfunction
    corecore